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PREFACE TO THE FOURTH EDITION

During the quarter of a century which has elapsed since the

first edition of this book was published, Projective Geometry has

found new practical applications. In particular, the uses of

photography in Air Surveying, as well as in Astronomy, involve

the principles and methods of projection
; and it appears probable

that, in both cases, the advantages of graphical constructions will

be increasingly appreciated. Meanwhile the older applications to

Cartography, Geometrical Optics and Engineering Drawing have

lost nothing of their importance.

No apology is therefore needed for the insistence on drawing-

board constructions, which was a feature of the earlier editions.

Indeed this has been emphasized, in the present edition, by the

addition, at the end of all the later chapters dealing with the

geometry of the plane, of a set of drawing examples marked B
,

which had previously been restricted to the first seven chapters.

From the purely didactic standpoint, actual drawing is even more

valuable to clear up difficulties in the more advanced work than it

is in the elementary parts of the subject.

It still remains true, however, that the chief interest of projective

methods is for the pure mathematician, for whom they provide an

instrument of remarkable range and power.

The general scheme of the original edition has remained, save

in one important respect, substantially unaltered. In particular

I have not modified the lines on which the subject is introduced in

Chapter I, though I have triedjx) remove certain obscurities and

have kept the graphical constructions concentrated towards the

end of the chapter, so that they may be omitted by those who
attach no importance to such constructions. I am aware that this

will not satisfy certain critics, but I could not have met their

objections without abandoning a conception of the genesis of the

subject which I still believe to be the right one.

The chief alteration involving the geometry of the plane has

been a rearrangement of order, which brings in Involution before,
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instead of after, the discussion of foci and focal properties of the

conic.

This change was always desirable, for the introduction of foci

by means of the focal spheres was never really the natural approach

and had the defect of masking the true significance of foci from

the projective point of view. The ban on the early introduction

of Involution, which used to be imposed by certain University

syllabuses, has now been generally abandoned, and the treatment

of the whole subject gains thereby in clearness and coherence.

The above modification of plan has necessitated a good many
consequential alterations. Chapter VI now deals with ranges and

pencils of the second order and self-corresponding elements, and

this naturally leads to a discussion of Involution in Chapter VII,

followed by the focal properties of the conic in Chapter VIII.

Up to this point the whole treatment, although capable of

interpretation in a wider sense, is based upon real elements and

constructions actually possible on the drawing-board, as in my view

this is essential to give confidence to the beginner.

Chapter IX then introduces imaginary elements and the circular

points at infinity. For this, appeal is made, as in the original

edition, to algebraic considerations. Although, in strictness, such

considerations are outside pure geometry, they are found, in

practice, sufficiently convincing to the student, they avoid the

usually long-winded arguments based upon a purely geometrical

theory of imaginary elements, and it would seem pedantic, at this

stage, not to use them. For the same reason I have not hesitated

to employ such considerations whenever they lead, as in the treat-

ment of homographic fields or the intersections of loci of various

degrees, to general principles most obviously and directly. But
I have tried consistently to preserve a geometrical spirit throughout,

so far as possible.

Chapters X and XI are devoted to a discussion of homography
and reciprocation respectively, in relation to plane fields. In

Chapter XI an investigation of Inversion has been added
;

this

is a new feature : although Inversion is not really included under

projective methods, it is closely allied to them and usually associated

with them in University syllabuses. It is also important to make
the student aware of the fact that all one-one point transformations

are not necessarily homographic.

Chapters XII-XIV follow the same lines as Chapters XI-XIII
in the first edition. The discussion of quadrics, originally limited
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to one chapter, has appeared inadequate, even at this elementary

stage, and has been expanded, so that two chapters, XV and XVI,

have now been given to it.

Apart, however, from alterations of order, a large number of

improvements and additions have suggested themselves in the

course of revision. Among these may be mentioned a new treat-

ment of the circle of curvature in Chapter V, based upon the

perspective transformation, in Chapter III, of conics having three-

point and four-point contact, and some elementary results on

curvature of twisted curves and of quadrics in Chapters XV and

XVI
;

the harmonic envelope and locus of two conics as an

illustration of homographic involutions in Chapter XII
;

an

introduction to the general plane cubic and quartic obtained from

pencils of conics in Chapter XIII
;
the focus and directrix property

of the sphero-conic in Chapter XIV ;
a three-dimensional analogue

to the complete quadrilateral and quadrangle, and brief discussions

of (i) homographic spaces in three dimensions, (ii) inpolar and out-

polar quadrics, in Chapters XV and XVI.

Indeed, very few chapters have survived without drastic alteration,

and many have been practically rewritten.

A number of new examples have been added
;

not only have

new sets of drawing examples been inserted at the end of

Chapters VII, IX-XIII, but a new departure has been to distribute

many examples in the text of the chapters, where they serve as

illustrations to the articles to which they are appended. In this

way the text provides a clue to the solution ;
conversely the

examples help towards the immediate understanding and elaboration

of the text. It will be found that the loss of such examples from

the sets at the end of the chapters has generally been more than

made good, so that in fact the total number of examples in the book

has been increased from 406 to 893.

Something may be said about the notation. On the whole,

experience shows that the notation employed in the earlier editions

has proved workable. Certain improvements in nomenclature,

however, have been adopted in the present volume. Thus elements

not at infinity have been described shortly as
“
accessible/

3 “
Axis

of collineation
33

has been discarded in favour of the now more

usual
ee
axis of perspective.

33 The cumbrous terms
cc harmonically

circumscribed to
33 and

“
harmonically inscribed in

33 have been

replaced by “ outpolar
33 and “ inpolar.

33 The notion of “ field
33

has been used, in preference to that of “ figure,
33

in dealing with
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general transformations. The use of the term “ base ” has been

generally applied to those elements connected with a geometric

form which remain constant
;
thus a flat pencil has two bases, its

vertex and its plane, and the word 44
cobasal ” implies that both

these bases are the same. In like manner the quadrangle to which

a pencil of conics are circumscribed is referred to as the base of the

pencil. I have retained the term
44
equi-anharmonic ” to signify

forms such that two corresponding sets of four elements have the

same cross-ratio
;

a modern school of thought uses this term to

denote a set of four elements such that they are projective with

themselves, when any three of them are interchanged cyclically
;

but a word is required for equi-anharmonic in the old sense, apart

from “ projective
55

or
4

‘ homographic ” which, although ultimately

equivalent, proceed originally from a different concept.

It must be admitted that, in many respects, the accepted

nomenclature of the subject has not always been happy. The

word 44
sheaf,” used in the older books for a set of lines and planes

passing through a point, does not really convey to the mind a

picture of what is intended, and, indeed, would be more appro-

priately applied to what is known as a regulus. I have adopted

the word “ star ” instead of “ sheaf,” following a practice which is

gradually being introduced. The term 44
axial pencil ” also seems

to me unfortunate, and, in fact, in the geometry of the “ star,”

where flat and axial pencil correspond to range and flat pencil

respectively “ in the plane, actually misleading. A new word is

needed for a form consisting of planes, e.g. some such word as

“ fold ”
;
were

44
fold ” used to describe an axial pencil, a

44
fold

”

of the second order would denote the set of tangent planes to a

cone of the second order, a form for which there is at present no

satisfactory short word ; conical pencil must obviously denote a

cone of lines and corresponds to a range of second order
;

the

cone of planes corresponds to a pencil of second order, but the

word 44
pencil ” cannot be used again. Another advantage of the

introduction of the word “ fold ” would be that (leaving systems

of conics out of account), a range would always consist of points,

a pencil always of straight lines, and a
4 4

fold ” always of planes.
44
Axial pencil ” is, however, so well entrenched in current practice

that I have not ventured to displace it, and I have introduced the

word 44
wrap ” to describe, when necessary, the set of tangent planes

to a cone.

The term
44
self-polar,” when applied to quadrangles and quadri-
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laterals, has been changed to “ polar
55

;
the nomenclature of the

earlier editions appeared unsatisfactory, since such quadrangles

and quadrilaterals are not polar figures of themselves. Corre-

sponding changes have been made when dealing with the star and

with three-dimensional geometry
;

also, following Eeye, a distinc-

tion has been drawn between “ polar
55

and
££
conjugate

55
lines

with respect to a quadric
;

in the previous editions the two terms

had been used as synonymous.

I have retained the words
££
pencil of conics (or quadrics

)

55 and
“ range of conics (or quadrics),

55
although the latter hardly satisfies

me as a description. These terms are by now well-established, and

the alternatives would be : either to introduce entirely new words,

such as
££
loop

55
for “ pencil

55
(suggesting a number of paths

through fixed points), and ££
slide

55
for

££
range

,5

(suggesting a

deformable curve sliding on fixed guides)
;

or to employ the words
££
net

55 and
££ web

,

55
which I have used for linear systems of any

grade, to mean, when not accompanied by any qualification, the

net and web of the first grade, instead of, as now, those of the

second grade. On the whole, however, it seemed that continual

changes of notation were to be deprecated. It will be noticed

that the word ££ web 55
is still used to denote a tangential system,

and is correlative to
££
net .

55
I have not followed a practice some-

times adopted, of using
££ web 55

to denote a net of the third grade.

The use of Q to denote a quadric has been discontinued, so that

the rule that an italic capital always stands for a point, a small

italic for a straight line or curve, and a small Greek letter for a

plane, surface, or plane field, has now been made universal, with

the exception of (i) the circular points at infinity in the plane,

which are invariably denoted by Q, O', (ii) the circle at infinity,

for which the notation O has been introduced. With the exception

(i) just noted, Greek capitals are used to denote three-dimensional

aggregates or fields, when such enter into consideration.

My thanks are due to the authorities of the University of

London and of University College, London, and also to the Syndics

of the Cambridge University Press, for permission to include in

the examples a number of questions taken from London and

Cambridge examination papers.

I owe a specially heavy debt of gratitude to my friend and

colleague, Mr. T. L. Wren, Beader in Geometry in the University

of London, University College, for his invaluable help and sugges-

tions throughout. Mr. Wren very kindly undertook the laborious
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task of looking over the whole MS. of the revised work and has

actually checked practically every example, and suggested many

new ones. It is not too much to say that, but for his devoted

help, it would have been impossible to complete the revision of

the book in the very limited time at my disposal. Many of the

changes in nomenclature are based on his suggestions.

Finally, I have to express my thanks to Mr. F. P. Dunn and to

the staff of Messrs. Edward Arnold & Co. for their uniform courtesy

and assistance and for the care they have taken in the preparation

of the text and diagrams of the present edition.

L. N. G. F.

June 1935.
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PROJECTIVE GEOMETRY

CHAPTER I

SPACE AND PLANE PERSPECTIVE

1. Plane figures in space perspective. Let there be a set

of straight lines or rays, all passing through a point V

;

these

lines are not limited to lie in a plane. They form what is known

as a star of lines, of which V is said to be the centre or vertex.

If we now cut such a star by two planes, a l5 a2 (Fig. 1), so that

Pi, Qlt etc., are the intersections of the rays with ax ,
and P2 , Q2 >

etc., are the intersections

of the same rays with

a2 ,
we obtain two sets of

points which form corre-

sponding figures in the two

planes. *

Two such figures are said

to be in space perspective.

If we place the eye at F,

the two figures appear to

cover one another, since the

lines joining corresponding

points pass through V.

The process by which we
pass from one figure to the

other is termed projection,

and V is spoken of as the

vertex of projection ; the

figure in ax is said to be

projected from V upon a2 into the figure in that plane, and the

second figure is said to be the projection from V of the figure

in oc
1

. The plane upon which we project is referred to as the

plane of projection.

It should be noted that the two planes ax , a2 need not be, as shown
in Fig. 1, on the same side of the vertex V. If a photograph of a

plane diagram, or an air-photograph of flat ground, be taken, it

l
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is known from the laws of geometrical optics that the lines joining

any point of the object to the corresponding point of the photograph

all pass through a point known as the centre of the object-glass.

Such a photograph is therefore a projection of the object upon the

photographic plate.

It will be convenient, in what follows, when it is desired to

discriminate between the figure projected and its projection, to

refer to the first as the field and to the second as the picture. An
element of the field may then be described as an object, and its

projected element as its image.

It must be remembered, however, that this distinction is artificial,

and introduced merely for convenience of description, for geo-

metrically the relation between field and picture is interchangeable,

and either figure may be regarded as the projection of the other.

Projective Geometry studies the relations of corresponding

figures obtained by this process. It will be found that certain

important properties are transmitted unaltered, so that theorems

involving only such properties hold of both the original and the

projected figure.

Although the subject will here be treated from the point of view

of theoretical geometry, the reader should bear in mind that it has

many important applications in practice to engineering drawing,

interpretation of photographs, cartography and astronomical

photography.

2. Notation. The study of this subject is greatly facilitated by

the use of the following systematic notation, which will be adhered

to throughout.

The points, straight lines and planes which enter into the con-

struction of a geometrical figure will be spoken of as its elements.

The use of this general term will often enable us to state results

which hold equally of certain sets of points, or straight lines, or

planes, without specifying explicitly the particular type of element

considered.

Points will be denoted by italic capitals A, B, C , ... .

Straight lines, and also curves, will be denoted by small italic

letters a
,
b, c, . .

. ;
planes, and also other surfaces, by small Greek

letters a, /?, y, . . . .

Two elements are said to be incident if one lies in or passes

through the other.

Thus if A lies on a, then a
,
A are incident.

If a contains a, then a, a are incident.
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When two symbols are combined in the form of a product, the

joint symbol denotes that element which is incident with the

original two.

Thus AB denotes the straight line passing through the points

A y
B; Aa denotes the plane determined by the point A and the

line a
; a/? denotes the line of intersection of the planes a, /?

;

a/Sy is the point of intersection of the three planes a, /?, y.

Such a joint symbol is not always interpretable. Thus ab has

no meaning if a, b are lines in space which do not intersect. If,

however, a, b intersect, there are two possible meanings for ab
9

namely, the point of intersection of a and b, or the plane determined

by a and b. When dealing with problems in a plane, the first

interpretation will always be adopted. In other cases the ambiguity

will be removed by the use of the word “ point ” or “ plane ” before

the symbol ab.

The straight line joining two points will be described briefly

as their join ;
the intersection of two straight lines or planes

as their meet.

In dealing with corresponding figures, corresponding elements

will invariably be lettered alike, the figures to which they belong

being indicated by suffixes or by accents. Thus A 1
corresponds

to A2 ,
to a2 and so on. The student should be very careful to

adhere rigidly to this practice, as random lettering obscures the

correspondence of elements, which is their significant property

and should be brought into prominence by every possible means.

The student is supposed familiar with the notion of a segment on

a straight line as having sense, as well as magnitude. In this

connection it should be noted that the sense of a segment will be

indicated by the order of naming the letters.

Thus AB^-BA,
and, whatever be the order of the points A, B, C on the line

AB +BC-AC.
When it is desired to consider merely the length of a segment

AB, this will be written length AB or more shortly \AB\.

When the symbol AB is used it will in general be evident from the

context whether the infinite straight line AB is meant, or only the

segment AB .

The intersection of a straight line or a plane with a given plane

will sometimes be referred to as the trace of that line or plane

on the given plane.
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3. Corresponding lines and curves in projection. Collinea-

tion. Eeturning now to the two figures in space perspective

(Fig. 1), let Pi trace out a straight line p x
in the field

;
then its

image P2 will trace out a straight line in the picture.
‘ 1

For the ray VPx
sweeps out the plane tt determined by V and px ;

since the points P2 on the rays VP
X , they all lie in tr, jmd

therefore on the meet of n and the picture plane, which is a straight

line p2 ; p2 is the projection, or image, of p x
.

Notice that, if Px
lies on p x ,

then P2 lies on p2 ;
thus properties

of wicidence are preserved in projection.

Similarly Pj may describe any curve s
x

in the field
;
P2 then

describes the corresponding curve s2 in the picture, and 8
X ,

s2 are

sections of the same cone, whose vertex is F, by the field and

picture-planes, respectively
;
such a cone, of course, is not restricted

to be right circular.

If Pi, Qi are two object-points, px ,
the line joining them, then,

by what has already been stated, P2 and Q2 both lie on p2 . Thus

joins of corresponding pairs of points are corresponding lines.

Similarly meets of corresponding pairs of lines are corresponding

points.

If Qx
moves up to P

x
along the curve s

x , Q2 moves up to

P2 along the curve s2 ; p x , p2 then approach the tangents to

s
x , s2 at P1} P2 respectively, while still remaining corresponding

lines.

Thus a tangent and its point of contact in the field project into

a tangent and its point of contact in the picture, so that properties

of tangency are preserved in projection.

It should also be noted that the correspondence is not limited

to such points or lines of the figures as are actually present in the

diagram, or under immediate consideration, but involves potentially

all possible points and lines of either plane. Any element whatever

in the field plane may be selected and its corresponding element

in the'picture constructed
;
and conversely.

We shall frequently have occasion to refer to figures (either in

the same or in different planes), whose points correspond in such

a manner that the points of a straight line in either figure correspond

to the points of a straight line in the other. Two such corresponding

figures will be referred to briefly as being in collineation, or as

forming a collineation. It is clear from the above that a

figure and its projection on any plane are a particular case of a

collineation.
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4. Elements at infinity. Let a plane a (Fig. 2) be now drawn

through the vertex of projection V parallel to a2 . It will meet the

plane ocx in a line ix which is parallel to a2 . Also if Ix is any point

of,a*!, VI\ is parallel to a2 .

Similarly, if the plane r be drawn through V parallel to oci,

to meet a2 in a line j2i which is parallel to o

i

x , and J2 is any point

of J2 , VJ2 is parallel to ocx .

According to the language of Euclidean Geometry, the line VIx

does not meet a2 ,
and VJ2 does not meet ax ,

so that /2 , J\ cannot

be found in this case, nor can the lines i2 , j\ be constructed.

In order to av<$id the complications which would continually

result from the necessity of considering such cases of exception,

we introduce, by a convention, a set of new ideal elements, points,

lines and plane, which are called the elements at infinity. By
means of these elements the cases of exception are removed, and

theorems can be stated in a more general manner.

We shall say that a given direction in space determines one point

at infinity, through which all straight lines parallel to this direction

are supposed to pass.

This gives a construction for the line joining P to a given point

at infinity, viz. draw the parallel through P to the direction defining

that point at infinity.

Further, all planes parallel to a given plane are to be regarded

as intersecting in one straight line, which will be called the line at

infinity in that plane.

Any line lying in a plane has its point at infinity on the line

at infinity in that plane.

From these definitions it follows that the aggregate of all points

at infinity is met by any straight line in one point, and by any

plane in one straight line. It possesses therefore the essential

characteristics of a plane, and will be spoken of as the plane at

infinity.

The student should note carefully that on any line there* is one

point at infinity only, not two . For if there were two points at

infinity, a parallel to the line would pass through both of them,

and two straight lines would intersect in more than one point, which

would violate a fundamental postulate.

He may convince himself of the identity of the two opposite

infinities on a line by imagining a ray through a point 0 outside

the line and meeting the line at P to rotate continuously about 0.

P travels continuously along the line until the rotating ray passes
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through the position of parallelism, when P suddenly passes from

one extremity of the line to the other, showing that these opposite

infinities are not separated.

To call attention to the fact that an element lies at infinity,

the symbol oo will be used as an index, thus Aco
>
a00

,
etc.

We shall therefore, from now on, draw no distinction between

pairs of lines, or planes, which intersect at a finite distance, and

pairs which are parallel. In every case, a point or line of inter-

section will be assumed, but, if the elements are parallel, their

intersection will be at infinity.

It will, however, sometimes be convenient, for the sake of brevity,

to use a single word to specify that an element does not lie wholly

at infinity. Such an element will be said to be accessible.

5. Vanishing points and lines. We are now able to complete

our correspondence between the field and the picture.

For if on any line p2 (Fig* 2) of the picture plane oc2 we take

the point /2
°° at infinity, F/2

°° is parallel to p2 and therefore to

a2 . It thus lies in the plane a and meets a
x
at a point of namely

Jj, which corresponds to 12
°°. Accordingly all the points at infinity

of a2 correspond to points of ix . Conversely, if Ix is a point of ix ,

VIX is parallel to oc2 and meets a2 at a point at infinity. There is

thus a complete correspondence between the points of i
x
and the
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points at infinity of the plane a2 ,
which justifies the statement

of Art. 4
,
that the points at infinity of a plane are to be regarded as

lying on a straight line. The line at infinity of a2 ,
which corre-

sponds to will be denoted by i2
°° and is determined as the meet

of a2 with Fi1# that is, with a.

Similarly if e/4
00

is the point at infinity on any line p\ in aj, its

corresponding point J2 lies on the line j2 of Fig. 2, and VJ2 is

parallel to p x
. The points at infinity of a

x
lie on the straight

line 00 which is the meet of r and o^.

The line ix of a1? which corresponds to the line at infinity of oc2 ,

is termed the vanishing line of ax . Similarly^ is the vanishing

line of a2 .

In like manner a point 7
X
of pu which lies on il9 and therefore

corresponds to the point at infinity L2<x> of p2 ,
is termed the vanishing

point of pi 9
and the point »/2 ,

where p2 meets j2 ,
and which corre-

sponds to J^00 on piy is termed the vanishing point of p2 .

An important result follows immediately.

Since VI\ is parallel top2 ,
the line joiningthe vertex of projection to

the vanishing point of any line is parallel to the corresponding line.

Hence the angle subtended at V by the vanishing points of two

lines (say, plf qi) is equal to the" angle between the corresponding

lines p2 , q2 .

6. Axis of perspective. We have seen that, if pl9 p2 are two

corresponding lines in any two figures in space perspective, they

are sections by the field plane ocj and the picture plane a2 of the

same plane tt through the vertex of projection. They are therefore

eoplanar lines and must intersect , at a point X (Fig. 1). This

point X is common to and a2 and therefore lies on the inter-

section x of these two planes.

Thus corresponding lines intersect on this line x9
which is called

the axis of perspective.

In particular the vanishing line and the line i2
°° at infinity in

a2 , meet on x, or x and %i meet at infinity, that is, are parallel.

Similarly

/

2 and x are parallel.

Hence both vanishing lines are parallel to the axis of perspective,

which is otherwise evident from consideration of Fig. 2.

Examples

1. Prove that, if two figures are in space perspective, points on the axis

of perspective are self-corresponding.

2. Show that lines parallel to the axis of perspective correspond to lines

parallel to the same direction.
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3. Prove that, in any projection, there are two points in the field such

that every angle at either point projects into an equal angle in the picture.

4. Show that the two points in Ex. 3 subtend a right angle at the vertex

of projection.

5. Show that, in two figures in space perspective, there are two corre-

sponding lines, parallel to the axis of perspective, such that any segment

on one line corresponds to an equal segment on the other.

6. Prove that the two lines in Ex. 5 are symmetrical to the axis of per-

spective with respect to the two vanishing lines.

7. Preliminary proposition on intersecting lines. We now
prove the following proposition : if a set of lines in space are such

that any one line intersects every other, the lines must either pass

through a point, or lie in a plane.

Let a, b be two lines of the set, F the point ah, n the plane ab.

If now all the lines of the set do nob lie in n
,
let c be a line which

does not lie in tt, Then the only point where it can meet both a

and b is F, and therefore c passes through F.

Let d be any other line of the set. It must meet a, b and c.

If it meets them at points A, B, C other than F, then, since ABC
is a straight line, VA, VB , FC, that is a, b, c, must lie in a plane,

or c lies in tt, which we have assumed not to be the case. Hence

d must pass through F, and therefore every line of the set passes

through F.

Thus all the lines of the set either lie in tt, or pass through F,

which proves the proposition.

8. Intersection of corresponding lines a sufficient condition

for space perspective. If now we are given two corresponding

figures in different planes oq, oc2 ,
which are in collineation (Art. 3 ),

and which have the property that any two corresponding lines

intersect (which necessarily happens on the meet x of a
x ,
a2 ), then

the figures are in space perspective.

For let P
x , Qx be any two points of the figure in aj

; p* q2

the corresponding points of the figure in a2 . P\Q\, P2Q2 are

corresponding lines
;
by hypothesis they intersect and the four

points P
x , Qi, P2 , Q2 lie in a plane. Hence the lines PiP2 >

which join corresponding points, lie in a plane, and therefore

intersect.

It follows that every join of corresponding points intersects

every other such join
;

hence by Art. 7 these joins either all pass

through a point F, or lie in a plane 7r. But they cannot do the

latter, for in this case tt would contain all the points of both figures,

and the planes 04, a2 would coincide.
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Hence PiP2 , Q\Q& etc., all pass through a vertex V and the

figures are in space perspective.

9. Rabatment. Figures in plane perspective. The field and
its picture can best be compared, and, if drawing-board constructions

are required, must be compared, by bringing them into the same

plane.

The method of doing this which is the most convenient is to turn

the plane of the field about the axis of perspective, carrying its

figure with it, until it comes into the picture plane. Alternatively

the picture can be rotated about the axis of perspective into the

field plane.

This procedure of rotating one plane figure into another plane

about the line of intersection of the planes is termed rabatment, and

we are said to rabat one figure into the plane of the other.

Suppose now we start with two figures
<f>i,

cj>$ in space perspective,

and we rabat <^3 upon the plane of
<f>Y ,

so that it becomes a figure (/>2 ,

(f
>2 and

<f
>3 are, of course, congruent or superposable, but are in

different positions and will be considered distinct figures.

The rotation, however, has not affected the axis of perspective,

and, after rabatment, the corresponding lines of
<f> v

and
<f>2 still

meet on x.

(j>i
and

<f
>2 are now corresponding figures in the same plane which

have the property that corresponding lines meet on a fixed line x

of the plane.

Conversely any two corresponding figures cf> } , <f>2 in collineation,

which lie in a plane and are such that corresponding lines meet on

a fixed line x
,
may be obtained by rabatment from two figures in

space perspective.

For rotate
<f>2 about x out of the plane into a new position </>$,

then by Art. 8, <j> l
and

<f>z
are in space perspective, and

<f>2 is

obtained from <^3 by rabatment.

Two such figures are said to be in plane perspective, or In

homology or homological. The axis x is sometimes called the

axis Of homology ;
we shall continue to use the term axis of

perspective.

As the figures are in the same plane, a new consideration now
arises, to which the reader must, from now on, pay very careful

attention, namely, that the same point or line of the plane may
have an entirely different significance, according as we treat it as

belonging to one figure or to the other. This we shall indicate by

denoting such a point or line by a different letter in the two cases.
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For example, the line at infinity in the plane may be denoted

by either ii
00 or j2

co according as we regard it as line of
<j>i

or of <^2 -

In the first case its corresponding line in
(f>2 is the vanishing line i2 ,

which is the rabatment of i3 ;
in the second case its corresponding

line in
<f>x is the vanishing line jy

.

We see that there are two vanishing lines in the plane, one for

each figure. Note that the vanishing line of
<f> Y ,

say i
x ,

if treated

as a line, say p2l of <j>2) has no special significance.

10. Pole Of perspective. Let
<l>l9 <f>2 be two figures in plane

perspective in a plane a, and let x be their axis of perspective (Fig. 3).

Through x draw any plane /3, and take any point V in space, not

lying in a or j3.

Project cf>i from V on to /3. This gives a figure cf>3 in space

perspective with
<f>i,

x being again the axis of perspective.

$2 and </>3 are then corresponding figures in different planes, a

and j8, such that corresponding lines intersect. Hence by Art. 8

they must be in space perspective. Let V be the vertex of pro-

jection for
(f>2 and </>3 . Join UV meeting a at 0.

Now if Pi, P& P3 are any set of corresponding points in the three

figures, P\U and P2V meet at P3 and are therefore coplanar lines.

Therefore the four points E7, V, Px ,
P2 lie in one plane, and UV
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meets P\P2 - But since PXP2 lies in a, and UV does not (for V
was taken outside a), P

X
P2 can only meet UV at the point 0 of

UV which lies in oc. Hence P
X
P2 passes through 0, which is a point

independent of the choice of the points PXi P2i since U
} V do not

depend on PXi P2 . Thus we arrive at the result that : the joins

of corresponding points of two figures in plane perspective pass

through a fixed point 0 of the plane, which is called the pole of

perspective.

Examples

1. Prove that two figures in plane perspective can always be derived as

projections of the same figure from two different vertices.

2. Show that, in a plane perspective, points on the axis and lines through
the pole of perspective are self-corresponding.

3. Two curves are in plane perspective. Show that the axis of perspective

must be one of their common chords, and the pole of perspective must be
one of the intersections of their common tangents.

4. Show that the property of Art. 6, Ex. 3 holds equally of figures in plane

perspective.

5. Show that the properties of Art. 6, Exs. 5 and 6 hold equally of figures

in plane perspective.

6. Prove that if, in a plane perspective, a curve passes through the pole

0 of perspective, it touches its corresponding curve at O.

11. Desargues’ perspective triangle theorem. Let there be

in a plane two corresponding triangles A
x
B

x
CXi A 2B2C2 (Fig. 4),

and let B
X(JX

==(zXj B2Q2 —(i2j etc.

If the triangles are such that a
x
a2 ,

b
x
b2) c

i
c2 >

which we will

denote shortly by X
,

Y, Z respectively, are collinear, then it

follows at once from Arts. 9 and 10 that the triangles are in plane

perspective, and therefore A
X
A 2 ,

BXB2 , CXC2 pass through a

point 0.

The converse of this is an important theorem, namely, that, if

A
1
A2j BxB2 , C\C2 are concurrent, then a

x
a2 ,

b
x
b2 , c

x
c2 are collinear.

Join XY and denote it by x. Let cx meet x at Z. Join ZA 2

and, if it do not coincide with c2) let ZA 2 =c2', meeting a2 at B2

(Fig. 4). Then the triangles AiBxCx ,
A 2B2 C2 are such that the

meets of corresponding sides a
x
a2 ,

i-e - Y, Z, are

collinear. Therefore, by the theorem just proved A XA2 ,
BX
B2 ,

C\C2 are concurrent, and BXB2 passes through the meet 0 of

A
x
A 2 ,

C
xC2 . But we are given that B

X
B2 also passes through 0.

Hence B
X
B2 and BX

B2 coincide. Thus B2 and B2 coincide, since

each is the meet of the same two lines a2 and 0BX . Hence A 2B2 ,

that is c2 ,
passes through Z, and a xa2 , b xb2l cx

c2 are collinear.
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If now we have two figures <£2 in a plane, which form a

collineation and which possess the property that all joins of corre-

sponding points pass through a fixed pole 0, then all meets of

corresponding lines must lie on a fixed axis x.

Take two pairs of corresponding lines ax ,
a2 ;

b
} ,
&2 ,

and^% 838aia2 »

Y **bxb2 . Consider any other corresponding lines cl9 c2 such that

ai> &i> ci d° not pass through a point. The triangles formed by

axbx
c
x ,

a2^2c2 have the jo^118 corresponding vertices passing

through 0, and therefore cx
c2 (or Z) lies on XY

.

But c
x
is arbitrary,

except that it must not pass through a xb x
.

If now dx
is a line through a

x
b
x ,

it is always possible to form a

triangle with dx
and either b

x ,
cx

or a Xi c x
. Applying again Desargues’

theorem d
x
d2 lies on YZ (or XZ), that is, on x. Thus all pairs of

corresponding lines meet on x without exception, and the property

of the pole of perspective is a sufficient, as well as a necessary,

condition that two figures in collineation are in plane perspective.

Example

Prove directly, without quoting the results of Arts. 8-10, that if A xBXCX,

A 2B2C2 are two triangles in a plane and A XA 2 , BxB2f CXC2 are concurrent,

then axa29 bxb29 cxc2 are collinear ; and conversely.
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12. Cylindrical projection. Rabatment as a projection. If

the vertex of projection is at infinity, as F00
,
the lines P\P%, Qi<?2>

etc., joining corresponding points of the field and picture, all pass

through F°°, and are parallel. The projection is said to be

cylindrical, two corresponding curves being sections of a cylinder ;

whereas, in the case where the vertex is accessible, corresponding

curves, as explained in Art. 3, are sections of a cone, and this kind

of projection is sometimes termed conical.

In cylindrical projection F00^ 00
is the plane at infinity and

meets the picture plane in the line at infinity of that plane, which

is accordingly j2
co

. Thus lines at infinity correspond, and the

vanishing lines are themselves at infinity. Hence two parallel lines

in the field, which meet at a point J
i
00

,
correspond to two lines

which also meet at a point J2
°°> that is

>
two parallel lines in

the picture.

If F00
is in the direction perpendicular to the picture plane, so

that all joins P\P2 are perpendicular to that plane, we have the

special case of cylindrical projection known as orthogonal pro-

jection. The picture is then said to be the orthogonal projection

of the field.

We will now show that rabatment, as defined in Art. 9, is

equivalent to a cylindrical projection.

Let
<f
>3 ,

a figure in a plane jS, be rabatted upon a plane a into a

figure cj)2 . If P3 is any point of </>3 ,
and l\N is drawn perpendicular

to x
, where #=aj8

,
then, during rabatment, P3 describes a circular

arc P3P2 with N as centre, in a plane perpendicular to a/3.

Then P3P2 is perpendicular to the plane y which bisects the

dihedral angle between a, /?, through which the rotation takes place.

The figures <^3 , <f>2 are therefore in space perspective from the point

£7°° at infinity in the direction perpendicular to y, that is,
<f>2

is

derived from
<f>%

by a cylindrical projection.

Consider now a third figure </q, lying in a, and in plane perspective

with
<f>2 ,

with x as axis of perspective.

Since corresponding lines of fa, </>2 , </>3 meet on x, </>i
and </>$ are

in space perspective from some vertex F (Art. 8). To find F take

for the plane of the paper in Fig. 5 the plane perpendicular to x

passing through the pole 0 of perspective for
<f>i, <f>2 . This plane

contains Z7
00

.

Let Fig. 5 represent an elevation in this plane, so that all

points of x appear as a single point X ; in a similar manner, if

the vanishing lines i\, j2i meet this plane at I\, J 3 ,



14 PROJECTIVE GEOMETRY

these lines, being parallel to x, are shown in the figure by their

traces Jj, «72 , «7g.

By the property of the pole of perspective, /2
°° is at infinity on

01 Z70O/2
00

is the line at infinity in the plane of the paper and

meets /? at /3°°, the point at infinity in the trace of j8 on the diagram.

I\I^° is therefore parallel to this trace.

Similarly J2 corresponds to Jj00 on OJ2 >
an(l 3

=XJ2 ,
by

rabatment. Thus JvJi° is~parallel to the trace of a. ./
:r7 ]

x and

1,^1 x
meet at V. Also by Art. 10, f7°°F meets the trace of a at 0.

Clearly XIx
VJ3 ,

0VJ3J2 are parallelograms.

Hence XI
x
=J3 V—J20 (1)

Adding I XJ2

XJ2 =l x
O (2)

Thus the distance of a vanishing line from the axis of perspective

is equal to the distance of the pole of perspective from the other

vanishing line, both distances being measured with proper sign.

But further, XJ2 =XJ3 ,
by rabatment; and XJ3 =Ix

V, being

opposite sides of a parallelogram.

Hence l
x
O=J xV (3)

also 7j7 is parallel to j8.

If, then, one of two figures in plane perspective be rotated

about the axis of perspective, the vertex of projection of the

resulting figures in space perspective describes a circle obtained

by rotating the pole of perspective about the vanishing line of the
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figure which remains fixed and the angle of both rotations is the

same.

Conversely, if two figures are in space perspective from a vertex

F, and are brought into the same plane by rabatment, the pole

of perspective after rabatment is obtained by rabatting F about the

vanishing line of the figure which remains fixed, a construction which
will be found useful in drawing examples.

13. Particular cases of figures in plane or space perspective.

Several cases of figures in plane perspective will be already familiar

to the reader acquainted with elementary Geometry, thus :

(i) Similar and similarly situated figures in a plane. Here
all corresponding lines are parallel, and meet on the line at infinity,

which is accordingly the axis of perspective, x°°. Since this corre-

sponds to itself, both vanishing lines coincide with it. The theorem
of Art. 10 then shows that joins of corresponding points pass

through a pole 0 of perspective, which is the usual centre of

similitude.

(ii) Directly congruent figures similarly situated in a plane.

This is a special case of the preceding. Here again, the axis of

perspective is at infinity. If corresponding segments are drawn
in the same sense, the joins of corresponding points are parallel,

and the pole of perspective is at infinity. But if corresponding

segments are drawn in opposite senses, the pole of perspective is

at a finite distance.

(iii) Symmetrically congruent figures. These can be obtained

by turning one figure over about a line x of the plane, through two
right angles. This gives figures symmetrical about the line x
and the process may also be briefly described as reflexion in the

line x.

In this case corresponding lines meet on x, and the lines joining

corresponding points are perpendicular to x. The figures are in

plane perspective, x being the axis of perspective, and the pole of

perspective being the point at infinity in the direction perpendicular

to x .

(iv) Figures superposable by rotation about a line in their

planes. We have already seen that two congruent figures, derived

one from the other by a rotation about the intersection of their

planes, are in space perspective.

(v) Two similar (including congruent) and similarly situated

figures in parallel planes are in space perspective. For corre-

sponding lines, being parallel, intersect at infinity on the meet of

3
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the two planes, which is the line at infinity of both. The result

then follows from Art. 8.

(vi) Two figures in a plane derived one from the other by a
uniform stretch give a particular case of plane perspective.

A stretch is defined as follows : ilx.y be two fixed co-ordinate axes

in the plane (not necessarily at right angles), the point Pl5 whose

co-ordinates are (xlt y x ), corresponds to the point P2. whose co-

ordinates are (x2 > y2), where x2 =*xi, ?/2 k being a constant

termed the stretch-ratio. The transformation thus consists in

stretching the ordinate P
X
N (Fig. 6) in the ratio k

;
hence the name.

x is termed the axis of stretch, y the direction of stretch.

We first prove that the two figures
<f>i, </>2 are in collineation,

i.e. that a straight line locus in
<f>i

corresponds to a straight line

in
<f>2 » To do this, take any line pi passing through Pi and meeting

Fig. 6.

x at X . Let Qx
be any other point of pv Join XP2 ,

meeting the

ordinate QX
M at Q2 . Then by the properties of similar figures

Q2M : QiM =P2N : PX
N = k. Hence Q2 is the point corresponding

to Qi, and the locus of points Q2 is XP2 ,
which we call p2 .

Moreover, the joins of corresponding points P\P2 pass through a

fixed point, namely, the point at infinity on y ,
and the meets X

of corresponding lines pv p2 lie on a fixed line, namely, x. Accord-

ingly
(f>i

and
(f>2 are in plane perspective.

Examples

1. Prove that a stretch is equivalent to the rabatment of a cylindrical

projection.

2. A triangle A 2BiC2 is given as the orthogonal projection of a right-angled

isosceles triangle the angle at Ct being a right angle. If 0*4 2= 3

inches, Cal?2=4 inches, and the angle A 2<72J32— 60°, and if the axis of per-

spective passes through C t and makes with C^A^, C2B2 angles of 15° and 45°

respectively, construct the rabatted triangle A 1B1CV
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14, Projective figures. The process of projection may clearly

be repeated any number of times. Thus a figure fa in a plane 04

may be projected from some vertex into fa in a plane a2 ; fa may
then be projected from a second vertex into fa in a plane a3 ;

and

so on. The final figure fa+v obtained from fa after n projections,

lies in a plane att+1 which may, or may not, be identical with the

original plane a x .

Two such figures fa, fa+ v which are derivable one from the

other by a finite number of projections, are said to be projective.

Figures in space perspective are clearly projective, being derivable

by a single projection. Figures in plane perspective are also

projective, being derivable by two projections (cf. Art. 12 ). But,

in general, projective figures are not either in space or in plane

perspective.

The projective property is what mathematicians term transitive
,

that is, if <

5^ is projective with fa, and fa with fa, then fa is pro-

jective with fa.

For let 2Ji be the set of projections which transform fa into fa
and U2 the set which transform fa into fa, then and H2 applied

in succession form a finite set of projections which transform fa
into fa.

15. Particular cases of projective figures. The following are

cases of projective figures.

(i) Figures in plane or space perspective. This has already

been explained in the last article.

(ii) Coplanar figures superposable by rotation about a point

0 of this plane. To prove this, take a figure cf> x in the plane, and

two lines x, y through 0, also in the plane. Let fa be the reflection

of fa in x and fa the reflection of fa in y. fa and fa are oppositely

congruent
;
so are fa and fa. Hence fa, fa are directly congruent

figures. The point 0 is clearly unaltered by the transformation.

Hence fa is derivable from fa by a rotation about 0. But the line

x of fa corresponds to itself in fa, and the line x of fa is turned over

about y, that is, it becomes a line x3 which makes with x twice the

angle between x and y. By taking this last angle (which is at our

disposal) equal to half the given rotation, we have fa, fa connected

in the required manner.

Since fa, fa are in plane perspective (Art. 13 (iii)), they are pro-

jective. So also are fa, fa. Therefore fa, fa are projective.

(iii) Any two congruent figures fa , fa- Let them be in

different planes a1? a2 . By rabatting fa about into a2 ,
we
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obtain two congruent figures fa, fa in the same plane. These can

always be made directly congruent by rabatting in a suitable sense.

This process is equivalent to a projection (Art. 12), so that fa
and <j>3 are projective.

Now rotate fa about any point of its plane until corresponding

lines are parallel. Let fa be the resulting figure. Then by (ii)

above </>3 and </>4 are projective.

fa and <f)4 are now directly congruent and similarly placed. Hence

they are in plane perspective by Art. 13, so that fa and
<f>2 are

projective.

Combining the above results we see that cf>i and fa are projective.

If the figures fa, <f>2 are in the same plane, they may be directly,

or oppositely, congruent. If the former, we proceed as from the

stage fa in the previous case. If the latter, reflect fa in a line x

which bisects the angle between any pair of corresponding lines.

The new figure is now congruent and similarly situated to fa,

and we have fa projective with fa as before.

(iv) Any two similar figures fa, fa. Proceeding as in the

previous case, we transform fa by a series of projective operations

into a figure similar to fa and similarly situated. A projective

transformation (see Art. 13) then transforms the last obtained

figure into fa.

16. Construction of figures in plane perspective from given

data. A plane perspective relation is entirely determined when

certain elements are given, and we may then construct, point by

point, or line by line, the figure </>2 which is in plane perspective with

a given figure fa.

Let the pole 0 and axis x of perspective be given, and, in addition,

either a pair of corresponding points A 2 (whose join must pass

through 0), or a pair of corresponding lines al9
a2 (whose meet

must lie on x).

One pair of these additional data are immediately derived from

the other pair. For if Y is any point on x (Fig. 7), Y is self-

corresponding, by the property of the axis of perspective. Hence,

if A i, A 2 be given, YA l9 YA2 are corresponding lines, which may
be taken as alf a2 . Conversely, if a l9 a2 be given, any ray through

0 meets them at corresponding points Alf A 2 .

If now Px
is any point of fa, join AiPx meeting x at X . Then

XA 2 corresponds to XA x ,
and meets 0P

X at P2 .

Again, if is any line of fa, meeting x at X and a
x
at A x , join

OAi meeting a2 at A 2 . Then XA2 =P2 -
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Alternatively, instead of A 1} A 2 ,
or a l} a2 ,

we may be given the

vanishing line of one figure, say iY . If then Ix is any point of

ilf J2
00 is the point at infinity on 01h and is the line at infinity

in the plane. These provide a pair of corresponding points and a

pair of corresponding lines.

The previous constructions then become :

Join I
1
P1 meeting x at X. Z/2

°° is the parallel through X
to OIi and meets 0Px at P2 .

Let pi meet x at X
and ii at 7

X
. Then the

parallel through X to

OIi is p2 .

From the last result

we see that the line corre-

sponding to pi is parallel

to the join of 0 to the

vanishing point of p x
.

Thus the angle between

the lines p2 , q2 is equal

to the angle subtended

at the pole of perspective

by the vanishing points

of pi, qx
. This will be

found to be an important

property in constructions

connected with such

figures. The reader should compare the corresponding result for

figures in space perspective at the end of Art. 5.

Examples

1. Prove that, when a vanishing line and the pole and axis of perspective

are given, the construction given in Art. 16 for the line corresponding to a
given line pt fails when p x is parallel to the axis, and give an appropriate

construction in this case.

2. Show that, if Plf P2 be any two corresponding points, and if PXP%
meet the vanishing line ix at Ix and the axis of perspective at X

W1 + /iZ b 1
OPx 0P2

*

3. Prove (without using the property of the pole of perspective) that

the correspondence between two figures in plane perspective is entirely given
by the axis of perspective and two pairs of corresponding points. Deduce
a construction for the point corresponding to a given point with the above
data.
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4. Given a pair of corresponding lines and the two vanishing lines of two
figures in plane perspective, construct (a) the pole of perspective, (b) the

point corresponding to any given point.

5. Knowing one vanishing line, the axis of perspective, and a pair of

corresponding points, construct the pole of perspective.

6. Given the pole and axis of perspective and a pair of corresponding points,

construct the two vanishing lines.

17. Drawing of projections. If it be required to draw on

paper the projection upon a plane /S of any given figure in a plane

a from a given vertex V, or, what is the same thing, the section

by /3 of a cone whose vertex is V and base the given figure, the

method adopted in practice is to rabat the figure to be drawn

upon the plane a about a/3. From the data of the problem a/3

is known. Also drawing through V a plane parallel to /S, this

plane cuts a in the vanishing line iy of the given figure. The pole

of perspective is then obtained by rabatting V about iy in the

same sense that the projection is rabatted about a/8. We have now
the pole of perspective, the axis of perspective and one vanishing

line. The rabatted projection, which is of course in plane per-

spective with the original figure, may now be drawn by the rules

given in Art. 16. If at any stage the construction becomes awkward,

so that lines or points employed in the construction come off the

paper, two suitable corresponding points (or lines) may be found

and the relevant constructions used.

If the projection be cylindrical, the construction by the vanishing

line fails, for by Art. 12, both vanishing lines are then at infinity.

Thus to a point Iy 00 at infinity corresponds a point Z2
°° also at

infinity
;
and Iy°°, /2

°° are in general distinct, since the axis of

perspective is not here at infinity. Their join Zj 00^00
is therefore

the line at infinity
;
and 0, which is on this line, is a point at

infinity. Its position is then to be found by constructing, in

any manner, some one pair of corresponding points Ay> A2 .
0°°

is then the point at infinity on AyA 2 . The construction for corre-

sponding points which is given first in Art. 16 may then be used,

remembering that, where a line is stated to be drawn “ through 0 ”

in that construction, it should in the present case be drawn parallel

to A\A 2 .

If we do this, we find that in Fig. 7 A X
A 2 and PxP2 are parallel,

so that, if these lines meet x at K and N respectively,

P2N : PyN =A2K : AyK = constant. Hence such a cylindrical

projection, when rabatted into the plane of the original figure,

is obtainable from it by a stretch
(cf. Art. 13, Ex. 1).
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18. Practical example. A circle of radius 4 units and centre

C lies in a horizontal plane a. V is a point 3 units vertically above

a point A

i

of the circle. B\ is a point of the circle 90° distant

from Ai. The circle is projected from V on to a plane /9 passing

through a line a; in a which bisects CB
l
at right angles. The

Fig. 8.

plane j8 is inclined at 60° to the horizontal plane. There are two

such planes j8. To define fi
completely we suppose that it is the

one whose upper half is further from A x .

Consider the plane y which passes through V and is perpendicular

to x. We shall need, for the practical construction, two figures

(Fig. 8), one in y which we shall call the elevation figure, and one
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in a which we shall call the plan figure. In the elevation figure

the planes a, /? appear as straight lines, viz. the lines in which they

cut y ;
these are the traces of the planes on y. Similarly in the

plan figure y appears as its trace on a. It is convenient to place

the figures one above the other, the two lines which represent ay

in the two figures being parallel, the points which represent the

same points being on the same perpendiculars to ay.

Mark in the elevation figure the point Ay and the point X where

x meets ay. Through X draw a line making 60° with ay. This

is the trace of /?. V is 3 units above Ay in the elevation figure.

Through V draw Vly parallel to the trace of jS to meet ay at ly.

1
1

is thus a point on the vanishing line of the original figure.

Rotate V about Iy counterclockwise into a position 0 on ay. 0 is

the pole of perspective when the figure in plane /? is rabatted

about x counterclockwise. Let the original figure and its rabatted

projection be denoted by
<f>y, <f>2 respectively. Then in the plan

figure x is the axis of perspective, 0 is the pole of perspective, the

parallel iy to x through ly is the vanishing line of
(f>y.

To construct the figure corresponding to the circle we have the

following method. Let Ly be a fixed point on iy. Take a variable

point Y on x. Through Y draw a parallel y2 to OLy. Join

LyY =ylf meeting the circle at Py, Qy. OPy, OQy meet y2 at the

points p» Q2 corresponding to Py, Qy. By taking a number of

parallels y2 we obtain a number of points on the projection of the

circle. This projection is shown by the curve in Pig. 8.

The lines corresponding to the tangents at the points Jy
,
Ky

where iy meets the circle are important. These tangents at infinity

or asymptotes (see later, Art. 34) are immediately constructed

by drawing through the points T, U where the tangents to the circle

at Jy, Ky meet x, parallels to OJy
,
OKy.

19. Problems in projection. It is often useful to be able to

construct a projection so that the projected figure shall satisfy

certain conditions. We will consider three of these.

I. To project a figure <j>y so that a given line iy is projected to

infinity. Thus iy is to be the vanishing line. Hence, the vertex

V being arbitrarily selected, the plane of projection is any plane

parallel to Viy.

II. To project a figure
<f>y

so that a given line iy is projected to

infinity and the angle between two given lines al9 by is projected

into a given angle a.

First solve the problem : to construct a plane perspective relation
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satisfying the required condition. Let A lf B x be the points where

ai, respectively meet ix . On A XBX describe a segment of a

circle containing an angle a. The pole of perspective 0 lies on this

segment. Take for 0 any such point and for axis x any line

parallel to ix . This defines a plane perspective relation satisfying

the given conditions. Now rotate 0 about ix through any angle

0 into a position V, and at the same time rotate the plane of the

X

original figure about x through the same angle 6 into a position /?.

A projection from F on to jS effects what is required.

III. To project a figure
<f>x

so that a simple quadrilateral

(Fig. 9) becomes a square of given size. As in II we
will solve the problem first for plane perspective.

Let Ei 9 Fx be the intersections of opposite sides {A xBi, C7xZ>i),

(A 1D1 , BxCi) respectively
;
let G

x
be the intersection of the diagonals

(AiCi, BxDi).
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Take ExFi as vanishing line fa ;
then E2 ,

F2 are at infinity, and
A 2B2C2D2 is a parallelogram.

If the angle at G2 (the angle between the new diagonals) is a

right angle, the parallelogram A 2B2C2D2 is a rhombus. If further

any one of the angles at A 2) B2 ,
C2 ,

D2 is a right angle, A 2B2C2D2

is a square.

Describe on E
xFi a semicircle

;
if 0 lie on this semicircle the

angles at A lf Bl9 Cl9 Dlt which stand on EYFl9 project into right

Similarly if A
1
C

l
meet E

l
F

l
at H

x
and B

l
D

l
meet E

l
F

l at J l9

0 lies on a semicircle on J
l
H

l
. It is therefore the intersection of

these two semicircles.

Now the side A 2B2 must be parallel to OEi9 for E\ is the vanishing

point of Also A 2 lies on OA l9 B2 lies on OB
x

. Place between

OA
x ,
OB

l9 parallel to OEl9 a length A 2B2 equal to the side of the

given square : this will be the line corresponding to It

meets A^B
X
at a point X on the axis of perspective. Through X

draw a parallel to the vanishing line E
]
F

l ;
this is the axis x of

perspective.

To obtain the required result by direct projection, rotate 0
about El

F
l
through any angle into a position F, and project from

F on to a plane through x parallel to VEl
F

l .

EXAMPLES Ia

1. Prove that the figures in plane perspective with a given figure, when
the vanishing line of that figure and the pole of perspective are given, but
the axis of perspective is varied, are similar and similarly situated.

2. Two figures
<f>v <£ 2 are in plane or in space perspective. Lines p l9 qx

of fa are parallel to fixed directions and are such that the angle between
them, measured by the rotation in a prescribed sense which brings p x into

coincidence with qv corresponds to a constant angle in
<f) 2 . Show that the

intersection ofp 2 and q2 describes a circle.

3. Show that, given any two triangles in a plane, a third triangle which
is in plane perspective with each of them may be constructed in an infinite

number of ways.

4. If a figure fa is in plane perspective with </> 2 and <j> 2 in plane perspective
with <j>3 , Ol9 03 being the poles of perspective and xl9 xz the axes of per-

spective in the two cases, show that OxO3 , xl9 x3 form a self-corresponding

triangle in fa 9 fa . What happens when 0 lf O s , xxx3 are collinear ?

5. Given any two triangles in space, prove that a third triangle can always
be found which is in space perspective with each of the original two.

6. Prove that a rotation of a figure in its own plane tt about a point 0
of that plane through a given angle 6 can be effected by three projections,

as follows.

Take a plane a through 0 perpendicular to the given plane tt, project
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from it on to a with any vertex U. Rotate a, U about the perpendicular to
7T through 0, the angle of rotation being 0. Let this bring a to £ and U
to V. Project from a upon $ with vertex WK

in the disection perpendicular
to the plane bisecting the dihedral angle 0 between a, Finally project
from /? upon n with vertex V.

7. Two sets of four points A lf Bv Clf D x ; A 2 , Bt , C2 , Z> 2 , in the same
plane, are such that A XA 2 , BXB2 , CxC2i D XD 2 , are concurrent at a point 0.

Show that, in general, the figures formed by the four points are not in plane
perspective, and that the necessary and sufficient condition that they
should be so is that three intersections such as (A xBl9 A 2B2) (A xClt A 2C 2 )

(A xD lt A 2D 2 ) are collinear.

8. Prove that another way of expressing the condition that the sets of

four points in Ex. 7 shall be in plane perspective is that one pair of corre-

sponding intersections such as {A xBl9 Cj^DJ and (A^B^ C2D2) shall be in

a line through 0, and that, when this condition is satisfied, all points and
lines derived from the original sets of four by taking corresponding joins

and meets form two figures in plane perspective.

9. If in a plane perspective relation it is given that the pole of perspective

and the axis of perspective are at infinity, show that the perspective relation

must be equivalent to a translation without rotation in the plane.

10. Show how to project a given line to infinity and at the same time
any two given angles into angles of given magnitude. Is this problem
capable of solution in all cases ?

11. Show how to project a given line to infinity and a given triangle into

a triangle congruent with a given triangle.

12. Show how to project a simple quadrilateral into a parallelogram

congruent with a given parallelogram.

13. A triangle ABC has its sides AB, AC cut at D and E by a parallel

to the base. Show how to construct an equilateral triangle of given side

which shall be in plane perspective with ABCy DE being taken as the vanishing
line.

14. In Problem III of Art. 19 show that there are two possible positions

of 0 and two possible positions of x and that these may be combined in

pairs in four ways, so that there are four perspective relations giving a solution

of the problem.

15. Prove that, if A l9 B19 Clf D x are any four given points (no three of
which are collinear) of a plane figure <j> l9 and A 2f B2i C 2 , D z are any four

given points (no three of which are collinear) of a plane figure <j>2 (not

necessarily in the same plane as ^j), then it is, in general, possible to obtain
a series of projections which transform A 1B 1C1

D
l
into A 2B2C2D2.

16. Show that if two figures are similar (but not necessarily similarly

situated) the vanishing lines are at infinity.

17. Three coplanar triangles are two by two in perspective and have a
common axis of perspective. Show that the poles of perspective are collinear.

18. Three coplanar triangles are two by two in perspective and have a
common pole of perspective. Show that the axes of perspective are con-

current.
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EXAMPLES Ib

[The axes of co-ordinates are rectangular throughout.]

1. Two figures in plane perspective have x—0 for axis of perspective.

A x— (2, 0) ; A s=(2-5, 2-5) ; Bx
= (3, 0) ; J32= (l, 1) are pairs of corresponding

points. Without using the property of the pole of perspective, construct

points corresponding to P1=(2, 3) ; Q 2=(o, -4) ; /x
® at infinity on y=0

;

«/V° at infinity on x-j-y—0. Verify that A XA 2 , BXB2 , PXP2, QXQ2>

JXJ2 »U pass through a point.

2. The pole of perspective being the origin, the axis of perspective the

line #4-2=0 and the vanishing line of the figure
(f> 1 being £=8, construct the

points of
<f>2 corresponding to ( - J, 4), (- 1, — 1), (1, -2), (2, 3) ; construct

also the points of fa corresponding to the same points.

3. Given the pole of perspective (3, 0), the axis of perspective £=0 and the

pair of corresponding lines ax {y=x) and a 2 (2y—x) construct by tangents the

curve corresponding to the circle £2+ ?/
2=4 of the figure fa.

4. ABCD is a square of 3 inches side. E , F, O are points of AD, AB
and BC respectively such that AF=DE—CO= 1 inch; EB and OF meet
at 0. A't D' are the mid points of OA, OD respectively, and B', G' are the

points of trisection (nearest to 0) of OB and OG respectively. Construct

the pole and axis of perspective which transform A, B, C,
D into A\ B', C', D',

and verify (i) that this axis is parallel to AD and BC, (ii) that the diagonals

AC, BD of the square meet the corresponding diagonals A'C', B'D' of the

quadrilateral upon the axis.

5. AB is a diameter of a horizontal circle of radius 2 inches. An oblique

cone is formed by projecting this circle from a point V vertically above A,
the distance V

A

being 2 inches. Draw the section of this cone by the plane

through A at right angles to VB.

6. Two planes a l9 a 2 cut one another at an angle of 60°. On the plane

bisecting the angle of 120° between them a vertex V is taken distant 4 inches

from their line of intersection.

If a figure in a x is projected from V on to a 2 construct the vanishing lines

of the figure in cc1 and the rabatted projection. If the axis of perspective

be taken for axis of y and the foot of the perpendicular from V upon it as

origin and if the positive half of the axis of £ be the one nearer to F, find

the points in a2 corresponding to (2, 0), (5, 0), (3, 4) in ctx.

7. A pyramid 80 feet high stands on a square base of side 100 feet, the

sides of the base running N. and S., E. and W. Draw the section of this

pyramid by a plane at 30° to the horizontal passing through a line running

from W.N.W. to E.S.E. through the S.W. comer of the pyramid, the plane

rising as one moves N.

8. ABCD is a horizontal square, of side 2 inches ; E is a point of BC
such that BE—Z.EC ; a point S is taken, outside the square, on the per-

pendicular from D to AE, so that DS= \A C. V is the point vertically

above S9 such that VS=DS. Construct the projection of the square ABCD
from the point V on to the vertical plane through B parallel to AE.

9. A right circular cone of semi-vertical angle 60° is cut by a plane making
an angle of 30° with its axis and cutting that axis at a distance of 3 inches

from the vertex. Draw the curve of section.

10. A horizontal square ABCD of 2" side is projected from a vertex 1*7"

above the comer A. Draw its projections upon the two planes through the

diagonal BD inclined at 45° to the plane of the square.
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11. A convex quadrilateral ABCD is such that AjB=4*, AD— 5", CD** 2",

CD=3*, AC— 5*. Find a pole and axis of perspective whioh will transform
ABCD into a square of side 1" and draw this square.

12. The axis of x being taken as vanishing line, construct an equilateral

triangle of side 2 units which is in plane perspective with the triangle whose
vertioes are (1, 2), (2*5, 2-5), (3, 1) ; and construct the pole and axis of per-

spective for this case.

13. A circular cylinder of radius 2" is cut by a plane making an angle

of 37° with its axis. Draw the section.

14. A horizontal circle is projected on to a vertical plane through its

centre from a point at infinity on a ray inclined at 46° to the vertical and
such that the vertical plane through it is inclined at 60° to the plane of

projection. Draw the projection.

15. The entrance of a skew tunnel is in the shape of a circular arch ; the

horizontal projection of the axis of the tunnel makes an angle of 15° with the

normal to the plane of the arch and the axis itself slopes upwards at 30°.

Draw the section of this tunnel by a horizontal plane.



CHAPTER II

CROSS-RATIO
;
PROJECTIVE RANGES AND PENCILS.

20. Cross-ratio. Let A 1} Blf C\, D
x

(Fig. 10), be four points

on a straight line Wj. Let them be projected from any vertex V
into points A 2i B2 , C2i D2i upon another straight line u2 .

V

We require to’find a relation between the mutual distances of the

points A l9 Bi, Ci> Du which will not be altered by projection.

Consider first the ratio of two segments.

A
X
B

X : A X
DX = &A{VBX : j^A

lVD l

= VA l.VB1 sin A l VBl : VA l
.VD

1
sin A

1VD l

= VBl sin A lVB1 : VD l sin A XYDX .

Note carefully that the above equation holds whatever the relative

28
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positions of A lf Blf Dj (the signs of the segments being taken into

account as explained in Art. 2 ), provided we introduce the follow-

ing conventions as to sign. On each ray through V a positive sense

is arbitrarily assigned, which fixes the signs to be attached to the

segments. VA X ,
VBl9 etc. Also a positive sense of rotation round V

is arbitrarily selected. The angle AiVBl
is then defined as the

magnitude (positive or negative) of the rotation in this sense

required to bring the positive direction on VA X into coincidence

with the positive direction on VB1 . This rotation is clearly

unique save for the addition or subtraction of a number of complete

turns, which does not affect the values of the sines.

In like manner

A 2B2 : A 2D2 = VB2 sin AiVB
} : VD2 sin A 2VD2 .

.*. (A\Bi : A^Di) jr{A 2B2 : A 2-D2) = • ^^1) >YD2).

The right hand side of the above equation is independent of the

points A lf A 2 . It depends only on the bounding rays VB
l
B2 ,

VD
Y
D2 . We may therefore replace A

x
by Cu A 2 by C2) without

altering the value of the left hand side. We have then

• A\Di) ~(A 2B2 : A 2D2 ) = (C\Bi : C\Di) ~(G2B2 : C2D2 )

A
]
B

l
.C l
D

l =WA
AiDi.C'iBi A 2D2.C2B2

The expression
M.CA

is termed the cross-ratio or the
A l
D

l .Cl
B

l

anharmonic ratio of the four points A i9
B

i9 D
x
taken in the

given order and is denoted by the symbol {AiByCiD^. To
remember it, note that the numerator is obtained by writing down
the four points in the given order and the denominator is obtained

from the numerator by interchanging the second and fourth

elements. We have, then, from the last written equation the

theorem

:

The cross-ratio of any four collinear points is unaltered by

projection.

We shall often have to deal with a cross-ratio {ABCD} when
one of the four points, say A, is at infinity. This we shall interpret

as the limit of the cross-ratio, when A moves away indefinitely on the

straight line.

In this case the factor
AB DB
AD™

+
AD'

Since DB is here constant
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DB
and AD increases numerically without limit, — tends to zero, and

AD
AB
AD

tends to unity. Hence {ABCD} approaches as its limit the

other factor —
,
and this will be the cross-ratio {A 00BCD},

To save needless repetition, a ratio such as A°°B : A^C will in

future be equated to 1, and a ratio such as BC : A^D to zero.

21. Different cross-ratios of four points. If we take the

points Ai, Bi9 Ci, Dl in a different order, we obtain in general a

different cross-ratio. Since four letters may be written down in

24 different orders, we should expect 24 different cross-ratios. It

will now be shown that only six of these are distinct.

First we shall prove that the cross-ratio of four points is unaltered

if any two points be interchanged, provided the remaining two be

also interchanged. Since under these circumstances the first point

A i must necessarily be interchanged with some other, the three cases

to be considered are therefore those where Ai is interchanged with

Bi, Ci and D
x
respectively. We have to prove that

{A&C^}HB^DM^CMA^}-{D&BM
or, writing out the cross-ratios,

A\Bi.CiDi B\A \.DiC\ C\Dy,AiB x DiC\.BiAi

- A xDi.CiBi
=
B^i.DiAi

=
CiBi,A xDi

=
D^Bfii

equalities which are obviously true.

It follows that distinct cross-ratios can be derived only from

those permutations in which A x stands first. For, if we have any
permutation in which A x does not stand first, it may be converted

into a permutation in which A x does stand first by permuting

A i with the leading element and interchanging the remaining two
elements, and this without altering the cross-ratio.

We have then only six distinct cross-ratios, namely those in

which A

i

stands first, the remaining three B 1} C\, Dx being permuted

in all possible ways.

To find the relations among these ratios, project A x to infinity,

that is, cut the four rays through V by a straight line u3 (Fig. 10)

parallel to VA X , We have by Art. 20

{AyBiCiDi} —{A^B^C^D^ = C^B3

= ^’ sa^ (1 )
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Interchange even letters D and B. Then

CnBn 1

Interchange middle letters B and 0,

BrtDo JDoBo DoC\ + OnBo
{AlP&Di} — jTTT =

fTfT
= TB°3<-'3 *-'3-°3 o 3x»3

c3d,
-l-fTW-l -A

V9JD3

Interchange in (2) the middle letters,

1 A -1
{^C' 1

Z)
1
B

1 }
= 1-

a
=-t

Interchange second and fourth letters in (3),

{AiDiBxCi} = yz\

Interchange second and fourth letters in (4),

{^ 1
5

1
2)

1
C'

1 } = A4i

These give the six distinct cross-ratios of four points.

(2 )

(3)

(4)

(5)

(6)

Examples

1. Show that the six cross-ratios of four points may be expressed in the

form sin2 9 , cos
2

9, cosec2
9, sec2 9 ,

— tan2 9 ,
— cot2

9.

2. If A, B, G, D, are four collinear points, and {AOBD}= m, {ACBE}=n,
prove that {ADCE}—(n- I)/(m- 1).

3. If A, B, C,
D are four collinear points, prove that

BC.AD 4- CA.BD + AB.CD^ 0.

Hence express the six cross-ratios of four points in terms of {ABCD}.

22. Cross-ratio of four rays. From Art. 20 it follows that

all transversals, that is, all straight lines which cut a set of four

rays or lines through a point, meet the four rays in sets of four

points which have the same cross-ratio. This cross-ratio is therefore

a property of the set of four rays and is called the cross-ratio of the

four rays.

4
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The analytical expression for the cross-ratio of four such rays is

easily written down. For

AyBy.CyDy AA l
VB

l AC\VDl

AyDy.CyBy ~ AAyVDy ACyVBy

VAy.VBy BmAyVBy.VCy.VDy sinCl
VD

]

" VAy.VDy sin AyVDy.VCy.VBy BmCyVBy

_ sin .sin CyVDy
~

BUx AyVDy.SmCyVBy

the signs of the angles following the convention of Art. 20.

Since four concurrent rays project into four concurrent rays

and transversals into transversals, it follows from the permanence

of cross-ratio of four points in projection that the cross-ratio of

four rays is likewise unaltered by projection.

The cross-ratio of four rays abed will be denoted by {abed}.

If the rays be OA
,
OB

,
OC

,
OD

,
it will also be denoted by 0{ABCD}.

23. Ranges and pencils. A range is a set of points on a

straight line. A flat pencil, or shortly a pencil, is a set of rays

lying in a plane and passing through a point which is the vertex

or centre of the pencil.

Ranges and pencils are called one-dimensional elementary

geometric forms. The component points or rays are spoken of as

the elements of the form. The straight line containing the points

of a range is termed the base of the range. Similarly the vertex

of a flat pencil is a base of the pencil, and, so long as we deal with

pencils in one plane, this is the only base which need be considered.

More generally, however, a flat pencil has two bases, its vertex and

its plane.

Where only a limited number of elements of a form are con-

sidered, the form may be denoted by enclosing the set of elements in

round brackets, thus
(
ABCD

)
denotes a range consisting of four

points A, B, C, D. Similarly 0(ABCD) denotes a pencil consisting

of the four rays OA, OB, OC, OD. Care should be exercised to

use round brackets in this connection, so as to avoid confusion with

{ABCD}, which denotes a cross-ratio.

More frequently a form will be denoted by taking a typical

element and enclosing it in square brackets. Thus [P] is a range

of which the point P, which is then considered variable, is the

typical element
: [p] is a pencil of which p is the typical ray, or

0[P] is a pencil with vertex 0, of which OP is the typical ray.
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24. Projective ranges and pencils. The elements of two
forms may be made to correspond, each to each. When the forms

are of the same type, that is, when both are ranges or both pencils,

they are said to be projective with one another when the corre-

spondence can be established by means of a finite number of projec-

tive operations. It follows from the definition that, if two forms are

projective with a third form, they are projective with one another.

For the series of projective operations which transform the first

form into the third, combined with the series which transforms the

second into the third, applied in the reverse order, transforms the

first into the second. (Of. Art. 14.)

It follows further from Arts. 20, 22 that projective ranges and

pencils are also equi-anharmonic, that is, any four elements of one

form have the same cross-ratio as the four corresponding elements

of any other form projective with the first.

An important particular case of projective ranges and pencils is

when the two ranges are sections of the same pencil by two different

transversals, or when the two pencils are obtained by joining up

the points of the same range to two different vertices. In the first

case the joins of corresponding points of the two ranges pass

through a fixed point : in the second case the meets of corresponding

rays of the two pencils lie on a fixed line. Two such ranges and

pencils are said to be perspective : they are clearly particular

cases of figures in plane or in space perspective, and are therefore

projective.

If two ranges be perspective the point where their bases intersect

is self-corresponding, and if two coplanar pencils be perspective

the ray joining the two vertices is self-corresponding.

Similar ranges are corresponding ranges in which corresponding

segments are proportional.

Equal ranges or pencils are ranges and pencils which can be

superposed so that corresponding elements coincide.

Equal pencils in one plane are said to be directly, or oppositely,

equal according as they can, or cannot, be superposed without

being turned over.

Since it has been shown (Art. 15) that congruent and similar

figures are particular cases of projective figures, it follows that

similar ranges are projective and also that equal ranges and equal

pencils are projective.

In two similar ranges the points at infinity correspond. For

since A
l
B1 :A2B2

=8l finite ratio A, if A xBl is infinite, so must
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A2B2 be infinite. Hence if Ay, A 2 be accessible points and By a

point at infinity, B2 is at infinity.

Conversely projective ranges in which the points at infinity

correspond are similar. Let AyByCyly 00
, A2B2C2I2

(X) be corre-

sponding groups of four points of two such ranges, then, since

the cross-ratio is unaltered,

AyBy.Cyly™ _A2B2.C2I2
«>

Ayly^CyBy A2I2«>.C2B2

Cili*
and remembering (Art. 20) that . T

— =1 and yyAyli a2i
= 1, we have

AyBy : CyBy =A2B2 : C2B2 ,

and therefore the ranges are similar.

Projective ranges may be collinear, that is, a projective

correspondence can be established between points of the same

line
;

in this case a particular point of the base has a different

significance, according as we consider it to belong to one range

or to the other. Similarly projective pencils may be concentric

(that is, they have a common vertex) as well as coplanar. They

then consist of the same rays, but each ray has a different signifi-

cance, according as we assign it to one pencil or to the other. Two
such ranges or two such pencils will be termed cobasal ranges or

pencils.

Sections of two projective pencils [px], [p2] by transversals v, w
are projective.

For in the set of projections which transform [pj] to [p2] let a

line Uy not belonging to [pj transform into u2 .

The range ^i[pi] is projective with w2[p2].

But ^[pi] is perspective and .*. projective with Uy[py], and

w[p2] is perspective and .*. projective with w2[p2 ]-

Hence v\jp{\ is projective with w[p2].

Similarly if [.Py ], [P2] *be two projective ranges, 0, S any two

vertices, the pencils 0[Py ], S[P2] are projective.

For in the set of projections which transform [PJ to [P2] let

a point Uy not belonging to [Py] transform into U2 .

The pencil ?7i[Px ]
is projective with the pencil Z72[P2].

But 0[Px] is perspective and .*. projective with Uy[Py], and

S\P2] is perspective and .'. projective with

Hence 0[Py] is projective with S[P2].

To abridge proofs the words
“
* is projective with ” will in future

(except in enunciations) be denoted by the symbol "a. Thus
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[Pj]7\[P2] is to be read : the range described by P
x

is projective

with the range described by P2 .

Two unlike corresponding forms will be called incident if each

element of one is incident with the corresponding element of the

other, provided the correspondence is unique. Thus a range and

a pencil are incident if each ray of the latter passes through the

corresponding point of the former. This relation is included by

Reye under the name perspective, but, since it does not come

under our definition of perspective figures, this would lead to some

confusion. The use of the term perspective will therefore be

restricted as explained earlier in the present article.

25. Two cobasal projective forms are identical if they have

three elements self-corresponding.

Consider two ranges. Let A
,
B, C be the self-corresponding

points, Pu P2 any two corresponding points.

Then {ABCP
1
}={ABCP2},

AB.CP
X

AB.CP2

" APX.CB
“ AP2.CB'

CP1CP2,
AP

X
AP2

CA +APX
CA+AP2

APX
” AP2

’

/. CA.AP2 =CA.AP1 .

CA is not zero, since by hypothesis the points A, B, C are

distinct, APl =AP2 or Plf P2 are coincident. Hence every

point is self-corresponding and the ranges are identical.

Consider now two concentric pencils. They determine on any

line two collinear projective ranges. If three rays of the pencils

are self-corresponding, three points of the ranges are self-corre-

sponding. Therefore every point of the ranges is self-corresponding

and in consequence every ray of the pencils is self-corresponding.

It follows that two distinct cobasal projective forms cannot have

more than two self-corresponding elements.

26. Construction of projective ranges and pencils from

corresponding triads.

I. Ranges. We need only consider the problem of establishing

a projective correspondence between two ranges on different

lines but in the same plane ;
for, if the ranges are in different
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planes, or in the same straight line, we may first of all project one

of them into a range lying in the same plane as the other range, but

in a different straight line.

Let til5 u2 (Fig. 11 (a)) be the bases of the two ranges [P2 ], [P2].

Let A l9 Bl9 Ci be three given points of [P
2 ]

corresponding to

A2 ,
B2 , C2 of [P2]. On A YA 2 take arbitrarily two vertices Z, Y.

Join XBl9 meeting YB2 at P3 ,
XC\ meeting XC2 at (73 . Denote

B3O3 by u3 ,
and let u3 meet A XA 2 at A 3 .

Then A 3f B3 ,
C3 are in perspective with A l9 Bl9 G\ from Z, and

with A29 B2 , C2 from Y.

From Z project fP2 ]
into [P3] on u3 ,

and from Y project [P3]

Fig. 11 (a).

into [P2 ]
on u2 . Then [P2']~k[PJ ;

but [P
2 ]

is given projective

with [P2], hence [P2
,

]
?;r [P2]-

These last are cobasal ranges. But clearly ^42 ', B29 C2 are,

by the construction described, identical with A 2 ,
B2f C2 . Hence

[P2], [P2 ] have three self-corresponding points and are identical

by'Art. 25 . Thus the projections fromZ and Y in succession enable

us to derive the range [P2] from the range [P
2 ].

II. Pencils. First of all, if the two pencils are not already

coplanar and non-concentric, project one of them into a pencil

coplanar and non-concentric with the other. We shall then consider

the two pencils to be of this type.
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Let U\ 9 V2 (Fig. 11
(6)) be the vertices of two such pencils [p^,

[p2]. Let ai9 blf cx
be three given rays of fpj, corresponding to

a2 ,
b2 ,

c2 of [p2]. Through a
Y
a2 (denoted by A) draw two arbitrary

rays, x
,
meeting bX9 cx

at Bi9 Cx ,
and y, meeting b2> c2 at B2j C2 .

Let Bx
B2i C\C2 meet at J73 . Let U%A, TJ$BXi U2C X be g3 , 63 , c3 .

Then the rays a3 ,
63 ,

c3 are perspective with ah clf and also

with d2i b2y c2 .

Let x meet the pencil [p^ in the range [PJ. Join the points of

this range to Z73 ,
forming the pencil [p3]. Then [p3] is perspective

and therefore projective with [pj]. Let y meet [p3] in the range

[P2 ]. Join the points of [P2 ] to U2 ,
forming the pencil [p2'J.

Then an^ [pi] is given projective with [p2]. Thus

[p2']7\[p2]. But it is clear that a2 ,
b2i c2 are identical with

a2 ,
b2i c2 . Hence, by Art. 25 [p2 ] and [p2 'j are identical, and the

given construction enables us to derive [p2] from [pj.

It follows from the above constructions :

(a) That the relation between two projective forms is entirely

determined as soon as three corresponding pairs of elements are

given.

(b) That a projective relation between two like forms can always

be established in which three arbitrary elements of one shall
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correspond to three arbitrary elements of the other, which is some-

times expressed by saying that groups of three elements are always

projective.

(c) That a projective relation between two like forms can always

be established in which any four elements of the one correspond to

four elements of the other having the same cross-ratio.

For let A l9 Bl9 Cl}
D

x ;
A 2 ,

B2 ,
C2 ,

D2 be two sets of four points

lying in straight lines ui9
u2 and such that {^ 1

jB
1C

f

1
Z>

1}
=

{A 2B2C2D^}. Let the projective relation which transforms A lf Blf

Cx into A 2t B2f C2 transform D x
into D2 . Then

{•A i
BlCiDl} ={A 2B2C2D2 }

Therefore {A 2B2C2D2}={A 2B2C2D2 }, whence it follows as in

Art. 25 that D2 =D2 . A corresponding proof holds for pencils.

The above constructions fail if either A
1
or A 2 =u l

u2 ,
but is not

self-corresponding; or if either a
x or a2 = UiU2 ,

but is not self-

corresponding. It is to be noted, however, that this cannot possibly

occur for all three pairs of corresponding elements, for if A x = ux
u2 ,

B2 may also be uxu2i but then neither Cx nor C2 can be uxu2 .

The pair of elements which do not include u
x
u2 (or ?71 Z72 )

can

always be taken as A l9 A 2 (or a
l9

a2)
in the above constructions,

which are then always possible.

If, however, both A
1
and A 2 coincide with u

x
u2 in Fig. 11 (a), or

both a
x
and a2 coincide with TJ\ U2 in Fig. 11 (b), the two given forms

have one element self-corresponding. The line XY then passes

through U\U2f but is otherwise indeterminate
;

or the point xy

lies on UiU2i but is otherwise indeterminate.

A simpler construction can then be given. For let BXB2 meet

CiC2 at Z7, then AB
xCi and AB2C2 are perspective from U .

Similarly if the join of 6 1&2 ,
c
x
c2 be u, ab

x
cl} ab2c2 are perspective,

corresponding rays meeting on u. The two given ranges or pencils

are then perspective and we have the important result

:

If two projective ranges or flat pencils, which are coplanar,

but not cobasal, have a self-corresponding element, they are

perspective.

. Examples

1. Give a geometrical construction connecting the points of two projective

ranges when the vanishing points of the ranges and a pair of corresponding

points are given.

2. Two collinear projective ranges are given by two corresponding triads

AyB-fiu Give completely a geometrical construction to find the
point Pa of the second range corresponding to a given point Px of the first.
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3. Two concentric projective pencils are given by two corresponding triads

aJ>xCv ajb tc % . Give completely a geometrical construction to find the ray p,
of the second pencil corresponding to a given ray p t of the first.

4. Two similar coplanar ranges have a self-corresponding point. Show that

the lines joining their corresponding points are all parallel.

5. If two similar ranges lie on parallel lines, the joins of corresponding

points pass through a fixed point.

27. Harmonic forms. Since any three collinear points may be

projected into any three other points, three points A, B, C on a

line c' (Fig. 12) may be projected into the same points with two of

them, say A and C, interchanged.

To effect this, draw any line a' through B and from any vertex S

in the plane a'c
r

project A
,
B

,
C upon a ' as A', B, C'. Let (A'C,

AC')=T. Then if we project A', B
,
C from T upon c\ they

project into C, B, A. The double operation has therefore inter-

changed A and C.

The two triads ABC, CBA define two projective collinear

ranges on c
f

. These two ranges have already a self-corresponding
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point B. They have therefore at most one other point D which

corresponds to itself.

This point D is the point where ST meets c'. For if ST meet

a' at D', D projects from S on a' into D' and B' projects back from

T on d into D.

Hence {ABCD} ={CBAB}

and D is the only point satisfying this condition.

When four points are such that they are projective with them-

selves, two of them being interchanged, they are said to be harmonic,

or to form a harmonic range, and the two which are interchanged

are said to be harmonically conjugate with regard to the other

two.

By Art. 21, interchanging both A and C, B and B

{QBAD} ={ADCB}.

Hence {ADCB} ={ABCD}.

It follows from (c) of Art. 26 that if A, B
,
C ,
D can be projected

into C, B, A, D
,
they can be projected into A, D, C, B. So that if

A, C are conjugate with regard to B
,
D, so are B

,
B with regard

to A
, C .

If we join the points of a harmonic range to a point outside

the range, we obtain a pencil of four rays possessing the same

property, namely that it is projective with itself, two rays being

interchanged. The interchangeable rays are said to be harmonically

conjugate with regard to the other two, and the pencil is termed a

harmonic pencil.

28. Cross-ratio of four harmonic elements. Let A be the

cross-ratio of four harmonic elements, say four points A, B, C, D of a

range.

If {ABCB} = A, then by Art. 21 {ABCS} ={<CBAB
]
}.

Hence A = ^, or A = ± 1.

Now if A were + 1, then, by (3) of Art. 21,

{ACBB}=0,
therefore AC.BB = 0.

That is, either C and A, or B and B coincide. But this is not

the case, by hypothesis. Hence the cross-ratio of four harmonic

elements, in which conjugate elements are not coincident, is ~1.
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The cross-ratio of a harmonic pencil is also - 1, since such a pencil

stands on a harmonic range.

It follows at once that every transversal cuts a harmonic pencil

in a harmonic range and also that four harmonic elements are

necessarily projective with four other harmonic elements, since the

two sets have the same cross-ratio.

The relation {ABCD} = - 1 can be put into two other different

forms, which are of great importance.

We have AB.CD +AD.CB =0,

i.e. AB(CA + AD) +AD(CA +AB) =0 ;

or ABAC +ABAC = 2ABAD,
and dividing by ABACAD

_1 2_

AB + AD ~ AC
AC is therefore a harmonic mean betweenAB and AD. Similarly

it is also a harmonic mean between BC and DC.

To get the other form, let 0 be the point midway between two

conjugates, say A and C. Substituting into the relation

AB.CD +AD.CB =0,

we have

(AO + OB) (CO + OD) + (AO + OD) (CO + OB) ==0,

2.AO.CO + (OB + OD) (AO + CO) + 2.0B.0D = 0.

But AO =OC=-CO, :. AO +CO- 0,

OB.OD= -AO.CO =OA2
.

When {ABCD} = - 1, AB : AD = -CB :CD, or the points A
and C divide BD internally and externally in the same ratio. Hence

by Euclid vi. 3 the two bisectors of the angles formed by a pair of

straight lines are harmonically conjugate with regard to the two

given lines.

Conversely if, in a harmonic pencil, one pair of conjugate lines

are at right angles, they bisect the angles formed by the other pair.

For let a, c be at right angles. Then if 6, d be not equally inclined to

a, c let 6,
&' be equally inclined to a, c

:

then {a, 6, c, d'} = - 1 =

{a, 6, c, d}, .*. d = d', that is &, d are equally inclined to a, c.

If one of the points of a harmonic range be at infinity its conjugate

is midway between the other two. For, let A 00 be this point,

then

A^B.CD
i

CD
n

A™D.CB~~ l’°T CB~ 9

that is BC**CD or C bisects BD.
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UB—D, orC=A, the definition of Art. 27 apparently leads to an

indeterminate result. Let us agree that the equation

AB.CD +AD.CB =

0

shall hold in all cases. If we now put Z) = Z?, we have

2AB.CB=0.

Hence either AB =0 or CB=0, that is, either A or C coincides

with B and Z). That the same result holds for pencils is easily seen

on cutting by a transversal.

Examples

1. Find all the cross-ratios of four harmonic points.

2. Prove that the necessary and sufficient condition that four collinear

points A y By Cy D can be paired so as to form a harmonic range is that
{ABCD} has one of the values ( - 1, 2, £).

3. Show how to draw through a given point a line which cuts the sides of a
given triangle at three points which, taken in a prescribed order with the
given point, form a harmonic range.

4. If A, B are harmonically conjugate with regard to G, D, and O is the
middle point ofAB

,

prove that

(^) OD _BD _ AD OB
OB ~~ CB “ AC ” OC *

(ii) AC.BD— CD.OB.

29. Harmonic properties of the complete quadrilateral and
quadrangle. A complete quadrilateral is the figure formed by four

straight lines a
,
b, c, d, called its sides. It has six vertices ab, ac

,

ad, bc,bd, cd formed by taking meets of sides in pairs. The three

pairs of vertices ab, cd
;
ac,bd

;
ad, be such that the two in each pair

do not lie on a common side are termed pairs of opposite vertices
;

the three lines joining them are called the diagonals of the quadri-

lateral. The triangle formed by them is the diagonal triangle of the

quadrilateral.

A complete quadrangle is the figure formed by four points A,

B, C
,
D called its vertices. It has six sides AB, AC, AD, BC,

BD, CD formed by taking joins of vertices in pairs. The three

pairs of sides AB, CD
; AC, BD ; AD, BC such that the two in

each pair do not pass through a common vertex are termed pairs

of opposite sides. Their three meets are called the diagonal points

of the quadrangle. The triangle formed by them is the diagonal

triangle.

The harmonic properties of the complete quadrilateral and
quadrangle are as follows :

I. The two vertices of a complete quadrilateral on any diagonal
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are harmonically conjugate with regard to the two vertices of the

diagonal triangle on that diagonal.

II. The two sides of a complete quadrangle through a diagonal

point are harmonically conjugate with regard to the two sides of the

diagonal triangle through that diagonal point.

To prove these results, refer to Fig. 12. Here AA', A'C, CC',

C'A are the four sides of a complete quadrilateral, of which A'C',

AC, ST are the three diagonals. The diagonal AC is divided

harmonically at B and D (Art. 27). But B and D are the points

where AC is met by the other two diagonals. The result for the

other diagonals follows by symmetry.

Again A, C', C, A' are the four vertices of a complete quadrangle,

of which S, B ,
T are the three diagonal points. The two sides

through S, SA and SC, are harmonically conjugate with regard to

SB and SD (since A, C are harmonically conjugate with regard

to B, D). But SB, SD are the two sides of the diagonal triangle

through S.

From the above properties we obtain the following constructions

for the element harmonically conjugate to a given element with

regard to two other given elements.

I. Through the point B, to which a conjugate is required with

regard to A and C, draw any line and on it take any two points A',

C' (Fig. 12). Join AA', CC' meeting at S, AC', A'C meeting at T.

TS meets the original line in the point D required.

II. On the ray SB=b, to which a conjugate is required with

regard to SA =a, SC = c, take any point B, and through it draw

any two lines a', c'. Let $=join of aa', cc', £=join of ac', a'c.

The join of ts ( = T) to the vertex S gives the ray d required.

In the above cases it is often said that D is a fourth harmonic

to A, B, C and d a fourth harmonic to a, b, c, respectively.

Examples

1. If EFG be the diagonal triangle of a complete quadrangle ABCD and

the sides of EFG also meet the sides of the quadrangle in six other points 7,

J, K, L, M, N, show that 7, J, K, L, M, N are the six vertices of a complete

quadrilateral having EFG for its diagonal triangle.

2. If efg be the diagonal triangle of a complete quadrilateral abed and the

vertices of efg be also joined to the vertices of the quadrilateral by six other

lines i, j f k, l, m, n, show that i, j, k ,
l, m, n are the six sides of a complete

quadrangle having efg for its diagonal triangle.

3. Show that the centres of the inscribed and escribed circles of any given

triangle form a complete quadrangle, of which the triangle is the diagonal

triangle.
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4. ABC is a triangle. On BC two points U, V are taken, harmonically
conjugate with regard to B, C. If P is any point of AB, and VP, UP meet
AC at B, S, prove that VB, US meet on AB at a point Q harmonically
conjugate to P with regard to A and B.

80. Cross-axis and cross-centre of coplanar projective ranges

and pencils. If in construction I. of Art. 26 X be taken at A 2

and Y at we obtain the case shown by Fig. 13 (a).

Consider the points which correspond to the point of intersection

of Ui, u2 . Let this point considered as a point of be called

and considered as a point of u2 be called V2 .

A 2Ux meets us at Us ;
and A2 Ui is itself u2 . Therefore U2 =u2u2 .

But the ranges u2 , are perspective, so that u2uH is self-corre-

sponding : hence u2u3 = U2 . In like manner Vx
=u

Y
uz . Now the

projective relation between the ranges being given, Z72 , V\ are fixed

points and therefore = U2VX is a fixed line, independently of the

choice of AiBfii, A2B2C2) which may be any corresponding triads

whatever of the given ranges.

It follows that if A
X
A2 ,

B
X
B2 be any two pairs of corresponding

points of two projective ranges the meet of cross-joins (AiB2 ,

A2Bx )
lies on a fixed straight line. This straight line may be termed

the cross-axis of the two projective ranges.

Similarly if in construction II. of Art. 26 x be taken coincident with

a2 and y with a 1? we obtain the case shown in Fig. 13 (6). If we
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now consider UiU2 and treat it as a ray u
x of the pencil \jp{] it

meets a2 at V2 , U3U2 =>us . But the pencils [p3], [p2 ] being
perspective, U3U2 is self-corresponding, hence V3U2 =>u2 . Similarly

if UiU2 ~v2 , UiUs =*Vi. Hence U3 is the intersection of the

two rays corresponding to U
lU2 ; U3 is therefore a fixed point,

independently of the choice of the triads a2b2c2 . Hence if

a x
a2t &1&2 be any two pairs of corresponding rays of two projective

pencils the join of cross-meets (a
lb2 ,

a2bx )
passes through a fixed

Uz
Fig. 13 (6).

point. This fixed point will be termed the cross-centre of the

two projective pencils.

If the ranges (or pencils) in the above theorems be perspective

the reasoning employed fails, for then u
xu2 (Fig. 13 (a)) and Ux

U2

(Fig. 13 (6)) are self-corresponding. Therefore U2i Vx (Fig. 13 (a))

and u2 ,
v

x
(Fig. 13 (6)) are coincident, and all we have proved is

that uB passes through one fixed point, viz. the intersection of the

ranges, and that UB lies on one fixed line, viz. the join of the vertices

of the pencils.

In the case of perspective ranges and pencils, however, a direct
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proof of the existence of cross-axis and cross-centre is easily given as

follows :

I. For Ranges. Let 0 be the pole of perspective, S the inter-

section of the ranges, A XA 2 ,
BX
B2 two corresponding pairs. Then

A XA 2B2BX are vertices of a complete quadrangle of which 0, S,

(AiB2 ,
A2B1 )

are diagonal points. Hence, by the harmonic

property of the complete quadrangle, SO and the line joining S
to (A

X
B2) A 2Bx )

are harmonically conjugate with regard to the

bases of the two ranges. But SO and these bases are fixed lines.

Hence the line joining S to (A XB29 A 2BX )
is a fixed line. Therefore

(A
X
B2 ,

A2Bx )
lies on a fixed line, which is the cross-axis.

II. For Pencils. Let x be the axis of perspective, s the join

of the vertices, aia2) b
x
b2 two corresponding pairs. Then a

x
a2b2bx

are sides of a complete quadrilateral of which (axbX)
a2b2 ), (a

x
a2 ,

b
x
b2), (aib2 ,

a2b x ),
i.e. s

,
x and (axb2 ,

a2bx ), are the diagonals. There-

fore U
l
U2 is harmonically divided by x and (a

x
b2 , »2&i)- x

meets UiU2 at a fixed point, and UXi U2 are themselves fixed.

Hence the fourth harmonic is also fixed so that (a x
b2 ,

Passes

through a fixed point on s. This is the cross-centre.

We will close the present chapter with the following two

theorems on the triangle, which are of importance.

31. The ratio of segments round a triangle. The idea of

cross-ratio, as introduced in Art. 20, may be generalised as follows :

If A
X
B

XCX , A2B2C2 be two triangles in space perspective from

a vertex V and any points of section Pi, Qi, Rx be taken arbitrarily

upon the sides BxCXi CXA X , A xBi of the first triangle respectively,

these will project into points P2 , Q2 ,
R> on the sides B2C2 , C2A 2 ,

A2B2 of the second triangle.

As in Art. 20 we can show that

(B
X
PX : PiCi) HB2P2 : P2C2 ) = (VBX : VCX )

+(VB2 : VC2),

and similarly

(CxQ, : QM) ~(C2Q2 : Q2A 2 )
= (VC 1 : 7A X )

+(VC2 : VA S),

(A& : RM) +(A2R2 : R2B2) = (VA 1
: VBX )

+(VA 2 : VB2).

Multiply these three sets of equal ratios together and we have

(B2P2 c2q2 a 2r2\ ^
2/

(R\R\ C\Q\ ABa /-

VVV QiAi RiBJ • V

BP CQ AR
?2^2 @2^2 R%B2)

that is the ratio p£i- qj- fig
°f the segments of the sides of a
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triangle taken in order is unaltered by projection. We may refer

to it for brevity as the triangle ratio.

Note carefully that in the above the segments have to be taken

with proper sign. The positive sense on each side of the triangle

may be arbitrarily selected. It is usual to take it so that, if we go

round the triangle keeping the area on our left, we are moving in

the positive sense throughout.

Example

Through the vertices A, B, C of a triangle three lines AP, BQ , CR are

drawn. Show that the continued product

sinBAP zmCBQ sinACR
sin CAP ' sin ABQ * sin BCR

is unaltered by projection.

32. Ceva’s and Menelaus’ Theorems. If, in the above, we

choose the vertex V and the plane A2B2C2 so that the line joining

then

C2Q2
°°

: QfJA2 = - 1 and A 2R2
°°

: R2
aB2 = -

1

and the triangle ratio reduces to B2P2 : P2C2.

Now, if A XPX ,
B1Q1 , C\Ri meet at a point 01 ,

then 02 is the

intersection of C,

2fi2
00 and B^Q.f3 (Fig. 14). A2C202B2 is then a

5
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parallelogram. Its diagonals bisect each other and P2 is the middle

point of B2C2 - Therefore B2P^ • iV?2 ** +

1

and

B\P\ C1Q1 A1R1

PiCi'QiAilhB,
U

This is known as Ceva’s Theorem.

If, on the other hand, P
x , Qx , Ri are collinear, that is, if they

are the three points at which any straight line meets the sides of

the triangle AiBxCi, then in the projected figure (Fig. 15), P2 is

at infinity on BC and B2P2
co

• P^°^2 = ~ 1 , so that

B\P\ C1Q1 A\Ri _ _
P\C\ Q\Ay R

X
B

X

“ x '

This is known as the theorem of Menelaus.

The theorems converse to those of Ceva and Menelaus are easily

proved and are left as an exercise for the student.

Examples

1. Prove that the three medians of a triangle meet at a point.

2. Prove that the three perpendiculars from the vertices of a triangle

on the opposite sides meet at a point.

3. Prove that the three symmedians of a triangle meet at a point. [A
Bymmedian AD' makes with the sides AB, AC angles equal to those which
the median AD makes with AC, AB respectively.]

4. Lines through the vertices of a triangle ABC

,

equally inclined to the
bisectors of the angles, meet the opposite sides at D , D' ; E, E' ; F, F',

respectively. If AD, BE, CF are concurrent, prove that AD', BE', CF'
are concurrent.

5. A line cuts the sides BC, CA, AB of a triangle ABC at L, M, N ; U,
M'y N' are the harmonic conjugates of L, M, N with regard to (B, C), (C, A),

(A, B) respectively. Show that L', M', N' are collinear.

6. Given three unequal circles, whose centres A, B, C are not in line, show
that their six centres of similitude lie in threes on four straight lines, which
form a complete quadrilateral of which ABC is the diagonal triangle.

7. The vertices of a triangle are joined to the points of contact ofthe opposite

sides with one of the escribed circles. Show that the lines thus formed are

concurrent.

8. Pairs of points P, P' ; Q, Q '
; R, R' are taken on the sides BC, CA, AB

of a triangle and equidistant from their midpoints. Show that if AP, BQ,
CR are concurrent, then so also are AP', BQ', CR'.

EXAMPLES IIa

1. Prove that if Iv J2 be the vanishing points of two projective ranges,

Pi, P2 any pair of corresponding points, then

IiPi-JgP2
= constant.

2. Prove that, in two projective ranges, the order of three points Av Blf G\
is different from, or the same as, the order of the three corresponding points



PROJECTIVE RANGES AND PENCILS 49

A 2 , B2 , C2 according as they do, or do not, include the vanishing point

between them. Show also that if I1 is intermediate between two of A lf Bx ,

Cx, then J2 is intermediate between two of A 2 , B2 , C2,

3. Through the points of one of two coplanar similar ranges lines are drawn
parallel to a given direction in the plane and through the corresponding

points of the other range lines are drawn parallel to another given direction

in the plane. Show that the intersections of corresponding lines lie on a fixed

straight line.

[The points at infinity correspond. Take vertices X, Y of Art. 26 on
line at infinity and result follows.]

4. All the vertices but one of a polygon lie on fixed lines, while its sides

are parallel to fixed directions. Show that the locus of the last vertex is a
straight line.

5. If the vertices of a polygon lie on fixed concurrent lines, while all the

sides but one pass through fixed points, the last side also passes through a

fixed point.

6. If the sides of a polygon pass through fixed collinear points, while

all the vertices but one move on fixed straight lines, the locus of the last

remaining vertex is a straight line.

7. Two concentric pencils are oppositely equal. Show that the two
bisectors of the angles between any two corresponding rays are self-corre-

sponding.

8. Three lines a, b, c meet at a point 0, and D, E are fixed points not on
any of these lines, nor in line with 0. If points X, Y are taken on 6, c respec-

tively, so that DX, EY meet on a, show that the line XY passes through a

certain fixed point of the line DE.

9. Two collinear projective ranges have a self-corresponding point A
given and two pairs of corresponding points Pv P2 ; Q i, Q 2. Show how to

construct the second self-corresponding point, and prove that there cannot be
more than one self-corresponding point, other than A.

10. Two concentric projective pencils in a plane have a self-corresponding

ray a given and two pairs of corresponding rays pv p 2 ; ql9 q2. Show how
to construct the second self-corresponding ray.

11. A, B are two fixed points : Pl9 P2 are harmonically conjugate with

regard to A , B. Show that the ranges [PJ, [P 2] are projective and find a

geometrical construction by projections to pass from one to the other. What
are the correspondents of the points A, B ?

12. Show that if {APBQ}={AP'BQ'}, then {APBP'}={AQBQ'}. Deduce
that if A, B are self-corresponding elements of two collinear projective ranges,

any two corresponding points determine with A, B a constant cross-ratio.

13. Prove that if

{A 1
B1C1P1}={A 2B 20 2P i}

{A,B1G1Rl)={A 1BiG1R,}

then {PxQ\BiB-^—{P2Q 2B2S^.

14. Prove that if two corresponding ranges be such that any four elements

of one have the same cross-ratio as the corresponding four elements of the

other they are projective.

15. Given the cross-axis of two projective ranges and a pair of corre-

sponding points, show how to construct the point of one range corresponding

to a given point of the other. In particular construct the vanishing points.
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16. Given the cross-oentre of two projective pencils and a pair of corre-

sponding rays, find a construction for the ray of one pencil corresponding to a
given ray of the other.

17. A ray through a fixed point 0 cuts a line u at P1 and the line at infinity

at P#
®. Pv Pa

® then describe projective ranges on u and on the line at

infinity respectively. Show that the cross-axis of these two ranges is a
parallel to u at a distance from u equal to the distance of 0 from u.

18. The arms OP, OQ of an angle of fixed magnitude which moves in one
plane about its fixed vertex 0 intersect two given straight lines at P and Q
respectively. Show that the ranges [P], [Q] are projective.

19. If in Ex. 18 one of the given straight lines is the line at infinity,

construct the cross-axis of the ranges [P], [0®].

20. Through a point 0 a ray OPQ is drawn meeting two fixed lines at P, Q.

If P be harmonically conjugate to 0 with regard to P, Q prove that the locus

of R is a straight line.

21. A, B are two fixed points, u a fixed line. If P be any point of u and p
be harmonically conjugate to u with regard to PA, PB, show that p passes

through a fixed point.

22. Apply Menelaus’ Theorem to prove Desargues’ Theorem that if ABC,
A'B'C' be two coplanar triangles such that AA', BB\ CC' are concurrent,

then aar

, bb', cc' are collinear and conversely.

23. ABC is a triangle, 0 any point in its plane. If OA meet BC at P,

OB meet CA at Q, OC meet AB at B, and if P' be the harmonic conjugate

of P with regard to BC, Q' the harmonic conjugate of Q with regard to CA,
R' the harmonic conjugate of R with regard to AB, show that P', Q', R' are

collinear. [P'Q'R
'

is termed the harmonic polar of 0 with respect to the

triangle.]

24. In Ex. 23 prove that the middle points of PP', QQ/, RR' are collinear.

Hence prove that the middle points of the diagonals of a quadrilateral are

collinear.

25. ABC is a triangle, A 1B1C1 a transversal cutting BC, CA, AB at Av Bv
Cv A 2 is the harmonic conjugate of A x with respect to B and C, B2 is the

harmonic conjugate of B
1
with respect to C and A. If AA % , BB 2 meet at O,

and CO meets AB at C 2 ,
prove that C 2 is the harmonic conjugate of Cx with

respect to A and B.

26. Straight lines AE'D'D, BF'E'E and CD'F'F are drawn from the

vertices A XBXC ofa triangle meeting the opposite sides at D, E, F

;

and BD :DC
— CE : EA=AF : FB=2:1. Lines AF'L, BD'M and CE'N are drawn meeting

the sides BC, CA, AB at L, M, N respectively. Prove that

DC:5DL=MC:3.ME.
27. The coplanar triangles ABC, PQR are in perspective, and D, E, F,

0, H, I are the intersections (BC, PQ) (BC, PR) (CA, QR) (CA, QP) (AB, RP)
(AB, RQ) respectively. Prove that

AF.AQ.BH.BI.CD.CE=AH.A1.BD.BE.CF.CG.

EXAMPLES IIb

[The axes of co-ordinates are rectangular, except where otherwise stated.]

1. Draw two straight lines OABCD, OA'C'B' making the angle AOA'—
30°; 0A=AP=PC=CZ>=4 cm., OA'= 6 cm., A'C'^C'B'^2 cm. The
points A , B, C correspond respectively to A', B', C' in two projective ranges.
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Construct geometrically (i) the point corresponding to D, (ii) the vanishing
point of the range on OA.

2. 0=(1,0); 0'«(-l, 0); -4 = (2, 3); £=(-5,2-5); 0=(--5, I) ;
£=

(0, 4). Construct a ray O'D' such that 0{ABCD)— 0'{ABCD'}.

3. AxB^yPv A 2B2C2 are given by distances from a fixed origin 0 equal to

2, 1, - 3, 4 ;
- 1, 5, 2 respectively.

Construct geometrically a point D 2 such that

{A
ft
B2G2D2}^{A 1B1C1D1}

and verify your result by calculation.

4. A, B, C, D, E are five points in order on a straight line such that AB—
BC—CD=DE—£ inch; and A, C, E correspond respectively to D, C, A
in two projective ranges. Construct (i) the point of each range corresponding

to £ in the other, (ii) the vanishing points of the two ranges, and (iii) the second

self-corresponding point.

5. Mark seven points A, A', B\ £, C, C\ D in order on a straight line

so that AA'=*A /B,=B,B=BC=CC'=C'D=2 cm. The points A, £, C
correspond respectively to A', £', C' in two projective ranges

;
find by geo-

metrical construction (i) the point D' of the second range to which D corre-

sponds in the first, (ii) the vanishing point of the second range.

6. Construct the cross-axis of the ranges defined by the corresponding

triads (0, 0), (0, 2), (0, 1) ; (1, 0), (0, 0), (3, 0) respectively, the axes of co-

ordinates being inclined at 75°. Hence construct any pair of corresponding

points of the ranges and the envelope of the joins of such points.

7. A t By G are three points of a straight line, ^4£=2, £0=1. Construct

points P, Qy R which shall be harmonically conjugate to A with respect to £0,
£ with respect to CA, C with respect to AB.

8. Construct a ray OD harmonically conjugate to OB with regard to OA,
OC where the angles ^40£, BOC are 30° and 15° respectively.

9. Using the ruler only, draw a line through a given point P and the

inaccessible meet Q (not necessarily at infinity) of two straight lines a, b.

10. Given four rays through a point 0, construct geometrically a segment
of a straight line which shall measure the cross-ratio of the four rays in a given

order. Hence show how to construct a segment which shall measure the

cross-ratio of four points on a line.

11. Two projective ranges on the lines x= 0, x—2 respectively, have
as corresponding pairs of points (0, 0) and (2, 2), (0, 1) and (2, 2-5), (0, — 1)

and (2, oo). Construct the envelope of the lines joining pairs of corresponding

points on the two ranges.



CHAPTER III

THE CONIC

33. Definition of the conic. A conic section or conic is the

projection of a circle, or the plane section of a cone (right or oblique)

on a circular base.

Since in general a straight line meets a circle in two points, the

same is true of a conic, because properties of incidence are unaltered

by projection : and since from any point two tangents can in general

be drawn to a circle, the same holds for the conic since properties

of tangency are unaltered by projection.

It follows from the definition that any property of the circle which

is projective, i.e. unaltered by projection, can be transferred at once

to the conic.

34. Types of conic. There are three types of conic, according

as in the original figure the vanishing line cuts the circle in two real

distinct points, or in two real coincident points (i.e. touches it)

or does not cut it in real points. The three cases are shown in

Fig. 16 (a), (b), (c).
*

In v the first case (Fig. 16 (a)) there are two distinct points at

infinity on the conic, namely the points 12°°, J2
CC> corresponding to

the intersections J
x ,

of the circle with the vanishing line. Such a

conic is called a hyperbola, being shown as the rabatted projection

of the circle (and therefore in plane perspective with it) in Fig. 16 (a).

The tangents to the circle at /1? J\ project into the tangents

at /2
00

, J2
°° to the conic. These two tangents are called the asymp-

totes of the conic. The curve has two branches, corresponding to

the two parts into which the vanishing line divides the circle

(Fig. 16 (a)).

“

If the vanishing line touch the circle (Fig. 16 (&)) Zj, Ji coincide.

The conic has two coincident points at infinity, i.e . it has the

line at infinity for one of its tangents. Such a conic is called a

parabola. It consists of one branch extending to infinity.

If the vanishing line do not cut the circle in real points (Fig. 16 (c))

there are no real points at infinity on the conic. The conic consists

of an oval lying entirely at a finite distance and is called an ellipse.

52
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The points which correspond in projection to the inside and

outside of the circle are said to be inside and outside the conic

respectively.

In the case of the ellipse and parabola, where the inside of the

projected circle lies entirely on one side of the vanishing line, it

projects into a single region. But, in the case of the hyperbola,

the vanishing line divides the area interior to the circle into two

segments, which are separated in projection. Each of these

segments is bounded by a different branch of the curve. Corre-

sponding regions inside the conic and circle are shown by similar

shading in Fig. 16.

Since in cylindrical projection the vanishing line is at infinity

the ellipse is the only one of the conics which can be obtained

from the circle by cylindrical projection.

There are also two other types of conic, viz. the line-pair and

point-pair. These are to some extent anomalous as, although they

can be derived as limiting cases of projection of a circle, the reverse

process is indeterminate. They will be discussed in Art. 44.

35. Curve as envelope and locus. The terms locus and

envelope will frequently occur in what follows. A curve may be

generated in two ways : (a) by a moving point P

;

we then speak

of the curve as the locus of P and we construct it graphically from

a large number of positions of P, forming a closely inscribed polygon
;

(6) by a moving tangent p ;
we then speak of the curve as the

envelope of p and we construct it graphically from a large number of

positions of p, forming a closely circumscribed polygon.

36. Chasles’ Theorem. If P be a variable point on a circle,

p the tangent at P, 0 any fixed point on the circle, t any fixed

tangent to the circle, then the pencil 0[P] is equi-anharmonic with

the range t[p], that is, if P, Q, P, S be any four positions of P, p, q ,
r, s

the corresponding tangents, then

0{PQRS} =t{pqrs}.

Let C (Fig. 17) be the centre of the circle, T the point of contact

of t, P' =pt. Then P'P, P'T being tangents to a circle, the angle

P'CT = |PCT = angle at the circumference POT.
Therefore by placing 0 on C and OT on GT the pencils 0[P],

C[P'] are superposable. Hence they are directly equal. Hence by
Art. 24

0[P]7vC[P'],

.*. 0{PQRS} =C{P'Q'R'S'} ={P'Q'R'S'} =t{pqrs).
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Pencils obtained by joining a variable point of a circle

to two fixed points. If 0' be any other fixed point on the circle,

we have by Chasles’ Theorem

0'[P]x0[F]x0[P].

Hence the joins of a variable point P on a circle to two fixed points

0, O' on the circle sweep out projective pencils.

In the case of the circle these pencils are clearly directly equal
,

for the angle POP = angle TO'P (Fig. 17), by the well-known

property of angles in the same segment.

38. Ranges obtained by intersections of a variable tangent

to a circle with two fixed tangents. Let t' (Fig. 17) be any other

fixed tangent. Let pt
f = P". Then by Chasles’ Theorem

C[P //]aO[P]aC[P'].

Cutting the projective pencils C[P'], C[P"] by t
,

t
'

[P'MP'a

or the intersections of a variable tangent p to a circle with two

fixed tangents t , t' describe two projective ranges.

39. Corresponding properties for the conic. Since cross-

ratios are not altered by projection and projective ranges

and pencils project into projective ranges and pencils respec-

tively, the properties stated in Arts. 36—38 hold for the conic,

except that now the pencils will no longer be equal9
for equal
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angles are not, in general, projected into equal angles. But the

properties

0{PQRS} = t{pqrs} (1

)

0[P]aO'[P] (2)

(3)

hold equally if for the word “ circle ” in the last three articles we
read “ conic.”

From the property (2) it follows that every conic may be obtained

as the locus of meets of corresponding rays of two projective pencils.

From the property (3) it follows that every conic can be obtained

as the envelope of joins of corresponding points of two projective

ranges.

If in Fig. 17 P approaches O', OP approaches 00', O'P approaches

the tangent at O'. Hence to 00' considered as a ray of the pencil

0[P] corresponds the tangent at O'. Similarly to O'O considered

as a ray of the pencil 0'[P] corresponds the tangent at 0. The

cross-centre (Art. 30) of the two pencils through 0, O' is therefore

the point of intersection of the tangents at 0, O'.

Again, if p approaches t, P' approaches I and P" approaches

the intersection IJ of the two tangents t
,

t
'

. Hence to tt' con-

sidered as a point of range t'[jp\ corresponds the point of contact T
of t . Similarly to tt' considered as a point of range t\p] corresponds

the point of contact T' of t
'
. The cross-axis of the two ranges is

therefore the chord of contact TT' (Art. 30).

In the above reasoning it is immaterial whether the curve of

Fig. 17 be a circle or a conic.

Examples

1. Show that with four points A, B, C, D on a conic may be associated a
definite cross-ratio : and also that with four tangents a9 b, c, d may be
associated a definite cross-ratio ; and show that the cross-ratio of four such
tangents is the cross-ratio of their four points of contact.

2. A variable tangent LL' meets two fixed parallel tangents to a conic

at Lt U ; if A, B are the points of contact of the fixed tangents, prove that

AL BLf
is constant.

3. A variable tangent meets the asymptotes of a hyperbola at P, P'.

If C be the intersection of the asymptotes, prove that CP.CP'— constant.

40. Property of tangents to a parabola. The property (3) of

the last article takes a particularly simple form when the conic

is a parabola. For then the line at infinity is a tangent to the curve

by Art. 34. Hence the points at infinity of the ranges t , t' corre-
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spond, and by Art. 24 the ranges are similar. But T, P', U corre-
spond to U, P"

9 T : hence

TP':P'U = UP f,

:P'
/
T',

or the intercepts made by a variable tangent to a parabola on
two fixed tangents are inversely proportional. This furnishes an
easy graphical method of drawing a parabola as an envelope, two
tangents TJT

, UT and their points of contact 2\ T' being given.

n being a large integer, take lengths
^
UT' and

^
UT and lay them

off in succession any number of times upon UT', TU respectively,

starting from U along UT and from T along TU. Join corre-

sponding points of division
;

each of these is a tangent to the
parabola.

Example

OT, OV are tangents to a parabola whose points of contact are T
and V. Show that the tangent to the parabola parallel to TV bisects
OT, OV.

41. The product of any two projective pencils is a conic.

We shall call the locus of meets of corresponding rays of two pencils

the product of the pencils and the envelope of joins of corresponding

points of two ranges the product of the ranges.

We have seen that every conic can be obtained as the product

of two projective pencils. But these pencils might be projective

pencils of a special type (as in the case of the circle, where they

are equal). We will now show that any two projective pencils

whatever lead to a conic locus.

Let $[P], 0[P] (Fig. 18) be the two pencils and let OT be the

ray of the pencil 0 corresponding to SO of the pencil S . Draw any
circle touching OT at 0. Let this circle meet OP at P', OS at S'.

By Art. 37

0[F]aS'[P'].

But 0[P']=0[P]a>S[P],

.\ S[P] aS'[P'].

Also S'O of pencil >S'[P'] corresponds in the pencil 0[P'] to the tan-

gent OT at 0, and this in turn corresponds to SO. Hence in pencils

&[P], S'[P'] the ray SS' is self-corresponding. Therefore by Art. 26

$[P], /S'[P'] are perspective, therefore corresponding rays SP
S'P' meet atA on a fixed line x. P is therefore constructed from P
by the construction for two figures in plane perspective, 0 being the
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pole and x the axis of perspective, S and S' a given pair of

corresponding points. For PP' passes through 0 and SP, S'P

'

meet on x.

The locus of P is thus in plane perspective with the circle which

is the locus of P', that is, it may be looked upon as the rabatted

projection of this circle upon another plane. It is therefore a conic

by definition. Note that the conic and circle touch at 0 ;
if

they intersect again at Y, Z, then Y, Z must be self-corresponding

points and the axis of perspective x passes through them.

42. The product of any two projective ranges is a conic.

Let [P], [P0] (Fig. 19) be the ranges, t
9
x their bases, p=PP0 .

Let T be the point of range x corresponding to the intersection V of

t, x . Draw any circle touching x at T and from £/, P0 draw tangents

t\ p' to this circle. Let p't' =P'. Then [P']tt[Pol^P]- Also U
of range [P'] corresponds to T of range [P0]

and T of range [P0]
corresponds to U of range [P]. Hence the ranges [P], [P'J have a self-

corresponding point V. They are therefore perspective ranges by

Art. 26. Hence PP' passes through a fixed point 0. The lines

p

p

are obtained from one another by the construction for figures

in plane perspective, 0 being the pole, x the axis, t, t! a pair of given

corresponding lines. For p, p' meet on x and (pt
,
p't') passes through
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0. Hence the envelope of p is in plane perspective with the envelope

of p* and, as in the last article, must be a conic.

The conic and circle both touch x at T. If they have other real

common tangents y, z, these must be self-corresponding lines and
so pass through 0.

43. Deductions from the above. In the proofs of Arts. 41,

42 the circle may clearly be replaced by any conic. For the only

properties of the circle made use of in the proofs are also, by Art. 39,

properties of the conic.

It follows that two conics in contact can be brought into plane

perspective in two ways, viz. (1) by taking the point of contact

to be the pole of perspective : the axis of perspective is then a line

passing through the remaining two intersections of the two conics
;

(2) by taking the common tangent at the point of contact to be the

axis of perspective : the pole of perspective is then a point through

which pass the remaining common tangents of the two conics.

These, however, are not the only ways in which such conics

can be brought into plane perspective (cf. Exs. IIIa. 11, 13).

Note also that the product of two projective pencils passes through

the vertices of the pencils.
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Thus the product of two projective pencils of parallel rays is a

hyperbola whose points at infinity and therefore the directions

of whose asymptotes are given by the directions of the two pencils.

Similarly the product of two projective ranges touches the

bases of the ranges. Thus the product of a range on an accessible

base and a projective range on the line at infinity is a parabola.

If therefore through a fixed point 0 a ray OP be drawn meeting

a fixed line u at P, and PQ°° be drawn through P making a fixed

angle a with OP, PQ00 touches a fixed parabola. For draw OQ00

parallel to PQ*0
,
the pencils 0[P], 0[Q*°] are superposable by means

of a rotation a about 0. They are therefore equal and projective.

Hence the ranges [P], [Q
00

] are projective. The latter being on the

line at infinity, the result stated follows.

It will also follow from Art. 41, since projective pencils project

into projective pencils, that the projection of a conic is a conic.

Examples

1. On the tangent at O to a conic any point P is taken and FT is drawn
to touch the conic at T. If 8 be any other fixed point on the conic, show
that the locus of the intersection of OT, SP is another conic, which touches

the original conic at 0 and S.

2. 0,0' are two fixed points on a conic s ; lisa fixed straight line. P is

any point on s ; OP, O'P are joined, meeting l at R, B' respectively
; OB'

,

O'B meet at Q. Show that the locus of Q is another conic.

3. 0, S are fixed points, a , b fixed straight lines. A line through O meets
a at P, b at Q. Through Q is drawn a parallel to SP. Show that this

parallel touches a fixed parabola.

4. Two conics touch one another at 0. From a point on the common
tangent at O lines are drawn to touch the conics at P, P'. Show that PP'
passes through a fixed point, through which passes any other common tangent
to the two conics.

5. Two conics touch one another at 0 . A line through 0 meets the conics

at P, P'. Show that the tangents at P, P' meet on a fixed line, which is that

common chord of the conics which does not pass through 0, if such a common
chord exists.

6. If, in Ex. 5 the conics are circles, prove that the tangents at P, P' are

parallel.

7. ORP, OSQ and PQ are fixed straight lines, and A, B are two fixed points.

Straight lines BS are drawn parallel to PQ. Prove that AR and BS meet
on a conic which passes through A, B, 0.

Show how to determine the tangents at A and B to this conic.

44. Line-pair and point-pair. If the two projective pencils of

Art. 41 are perspective their product breaks up into two straight

lines, namely the axis of perspective and the self-corresponding ray,

since the latter may be regarded as intersecting itself at any one of
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its points, and therefore must figure in the locus of intersection of

corresponding rays.

A line-pair is therefore a special case of a conic locus.

If the two projective ranges of Art. 42 are perspective, their

product breaks up into two sets of lines, one passing through the

vertex of perspective, the other passing through the self-corre-

sponding point, since any ray through the latter may be looked

upon as the join of the point to itself. The envelope then reduces

to these two points, so that

:

A point-pair is a special case of a conic envelope.

The line-pair and point-pair present certain anomalies which

should be noticed.

Let the components of a line-pair be a
,
b and their meet C.

Then a line through a point P of the plane meets the line-pair

in two distinct points, unless the line passes through C when
the intersections coincide. Thus from any point one tangent,

and one only, can be drawn to a line-pair. We may, to keep the

properties of conics perfectly general, look upon this as two co-

incident tangents, but it is then no longer true that a point, the two

tangents from which to a conic are coincident, is itself on the conic.

On the other hand, let the components of a point-pair be A, B
and their join c. From a point P two distinct tangents PA, PB
can be drawn to the point-pair, except if P be on c when they coincide.

The points of c may therefore be looked upon as belonging to the

point-pair conic. Any straight line then meets the point-pair in one

point, and one only. If we look upon this point as two coincident

points, to preserve the property that a straight line meets a conic in

two points, it will appear that a straight line can meet a conic in

two coincident points, without being a tangent to it, for lines not

through A and B are not tangents to the point-pair.

The true significance of the line-pair and point-pair will be more

apparent later on when we come to study the central and focal

properties of the conics.

It is interesting to note the manner in which the line-pair and

point-pair appear as projections of a circle. To obtain the line-

pair, project the circle from a vertex V outside its plane and cut the

cone so formed by a plane through F, i.e. take the vertex in the

plane of projection. Thus all the points of the circle project into V
(which is then the intersection of the lines of the pair), except the

two points where the circle meets the plane of projection, which

points project into any point of the corresponding line of the pair.
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To obtain the point-pair take V in the plane of the circle, but

outside the circle, and project on to any other plane. In this case,

all the tangents to the circle project into the line joining the points

oi the pair, with the exception oi the two tangents through V

,

which project into the points of the pair.

It should be noticed that, if we try to reverse these projections, the

process is indeterminate. Thus the points of a line-pair, other than

the double point V
,
project from V on to any plane into two definite

points, but V itself may project into any point of the plane.

Similarly the tangents to a point-pair A, B ,
other than those passing

through F, project upon the plane VAB into any line of that plane,

but those through V project into two definite straight lines VA,
VB. We cannot therefore obtain the circle from the line-pair or

point-pair by projection.

Note also that, in these cases, the line-pair, or point-pair, cannot

be brought into plane perspective with a circle.

45. A conic is determined by five points or by five tangents.

For let 0, O', A, B
,
C be five points on a conic, P any sixth point,

then the pencils

0(ABCP), O'(ABCP)

are projective. But 0 ,
O'

,
A, B, C determine completely the

corresponding triads 0(ABC), O'(ABC), and these in turn determine

completely the relation between the pencils. Hence OP being

given, O'P is known, that is, P is determined. Every point on the

conic is therefore fixed when five points are fixed. It follows that

two distinct conics cannot have more than four points of intersection.

The points A, 0 (and also the points B, O') may coincide without

making the constructions indeterminate, provided we interpret

OA, O'B as the tangents at 0, O'. Accordingly being given a

point on the conic and the tangent at this point is equivalent to being

given two points.

Similarly if t
,

t'
,
a, b, c be five tangents to a conic, p any sixth

tangent, pt, pt' are corresponding points of the projective ranges

defined by the triads t
(
abc), t' (abc). Therefore when pt is known,

pt' is known, and p is determined. Thus every tangent is deter-

minate when five are given. It follows that two distinct conics

cannot have more than four common tangents.

As before a, t (and also b, t') may coincide without making

the constructions indeterminate, provided we interpret at, bt' as

the points of contact of t, t'. Thus being given a tangent and its

point of contact is equivalent to being given two tangents.
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Prom the above we obtain a construction for the conic passing

through five given points. For take two of the given points for

vertices of two projective pencils and obtain corresponding triads

by joining to the three remaining points. Construct pairs of corre-

sponding rays by the method of Art. 26, or any other. The inter-

sections of corresponding rays are points on the conic.

A precisely similar method can be applied to obtain a conic as an
envelope when five tangents are given.

Example

Given three points on a hyperbola and the directions of its asymptotes, show
how to construct the pencils of parallel rays which generate the hyperbola
and deduce a construction for the asymptotes.

46. Conics having three-point or four-point contact. The
constructions of Art. 43 lead to important particular cases.

In the first place it is clear that, if we take a point 0 of a conic s x

as pole of perspective, and any line x
f meeting s x

at X
,
Y, as axis of

perspective, we obtain as the curve corresponding to s
x
a conic s2

passing through 0, X, Y. Since lines through 0 are self-corre-

sponding, sl9 s2 have a common tangent at 0,
so that they can

have no other intersections.

If we now make X approach 0, x ultimately passes through

0, and s
x ,

s2 have three coincident intersections at 0
;
they are then

said to have three-point contact at 0. Thus two conics having

three-point contact at 0 can be brought into plane perspective by
taking 0 and the common chord as pole and axis of perspective.

Since five points determine a conic, it is in general possible to

construct a conic s2 having three-point contact with s
x
at 0

,
and

passing through two given points p* Q2 of the plane. To do this,

join 0P2 , 0Q2 ;
these must meet s

x
at the corresponding points

P\i Q\. The chords P
XQ X ,

P2Q2 meet at X on the axis of per-

spective. Since this must pass through 0, it is OX ,
and is deter-

mined. s2 can then be constructed by the methods of Art. 16.

If, however, s2 is a circle having three-point contact with s
x
at 0,

only one such circle exists, since a circle is entirely determined by
three points. s2 is then said to be the circle of curvature at 0.

Its centre and radius are termed the centre and radius Of

curvature at 0.

Returning to the more general case of two conics, let now Y
also approach 0, then x approaches the tangent at 0, and the four

intersections of the two conics coincide at 0. If, therefore, we
6
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transform a conic 8
X
by a plane perspective, using a point 0 of 8X

as pole and the tangent £ at 0 to 8l as axis of perspective, we obtain

a conic s2 which has four-point contact with s
x
at 0.

We can always construct one conic s2 having four-point contact

with a given conic sx at 0 and passing through a given point P2

of the plane. For if 0P2 meets at Px , we have the pole 0 of

perspective, the axis of perspective, namely the tangent at 0, and a

pair of corresponding points Pl9 P2 . Unless 0 is a special point on

the conic, it is in general impossible to select P2 so that s2 is a

circle.

There exists one parabola s2 ,
however, which has four-point

contact with s x at a given point 0. For clearly, in the perspective

transformation from ix
to s2 ,

since the line at infinity touches s2 ,

the vanishing line s
x
must touch s

x
. Because the vanishing line is

parallel to the axis of perspective, it must in this case be the tangent

to s
x

parallel to the tangent at 0. This defines completely the

perspective relation, since we now have one vanishing line together

with the pole and axis of perspective. We can therefore construct

s2 . In particular the point at infinity on the parabola is on the line

joining 0 to the point of contact of the tangent to Sj parallel

to the tangent at 0.

Since a conic is determined by five points, it is impossible to have

higher than four-point contact between two distinct conics.

A curve which has with another contact of the highest possible

order is said to osculate it. Thus the circle of curvature is some-

times spoken of as the osculating circle
;
the parabola having four-

point contact with a conic as the osculating parabola, and so on.

47. Conics having three-line or four-line contact. If, in a

similar manner, we take as axis of perspective the tangent c at C
to a conic s

x ,
and as pole of perspective a point 0 outside 8

X , the

tangents from 0 to s
x
being x

, y, we obtain, since x, y ,
c, C are self-

corresponding, a conic s2 touching c at C and touching x, y. The
conics 82 have thus two common tangents coincident with c,

and two other common tangents x, y, so that they can have no other

common tangents.

If now x coincides with c, we have three common tangents

coincident with c, and the conics are said to have three-line

contact at C. The pole 0 of perspective is then the intersection

of c with the single remaining common tangent y .

If, further, y now approaches c, 0 approaches C, and we have in

the limit two conics having four-line contact at (7, and these are



THE CONIC 65

in plane perspective, the common tangent c at C being the axis of

perspective, and C itself the pole of perspective.

We will now show that, if two conics si9 s2 have three-line

contact at C, they also have three-point contact at C.

As in Art. 41, draw through C any fixed line CA X
A2 and a

variable line CPXp2 , meeting sl9 s2 at A lf A 2 and Pl9 P2 respectively.

Then-4 1[P1]7vO[P1]=:C
,

[P2] 7r^2[ jP2] and if CPXP2 is drawn along

the tangent at (7, Px
and P2 coincide at C, and in the projective

pencils Ai\P{\, A 2[P^\ 9
A XC corresponds to A2C so that CAiA2

is a self-corresponding ray. The pencils are accordingly perspective,

and corresponding rays meet on a line u. If now u, C are taken as

axis and pole of perspective, A 1
and A 2 as a pair of corresponding

points, s
x
will transform into s2 by the usual construction (Art. 16).

But we have seen that s
x
and s2 also correspond in a second

perspective, in which c is the axis and 0 is the pole. Let the axes

u
,
c of the first and second perspective meet at X.

Now if from any point on an axis of perspective tangents are

drawn to two corresponding conics, these tangents must necessarily

correspond in pairs, since corresponding tangents meet on the axis.

In the given case, if tx ,
t2 are the tangents from X to Si and s2

(other than the common tangent c), c is self-corresponding in both

perspectives (since it passes through both poles) and therefore ti9 12

are corresponding lines in both perspectives. Hence their points of

contact Ti, T2 are corresponding points in both perspectives, so that

T
xT2 passes through both 0 and C. Thus Tx> T2 lie on c, and

therefore must coincide with C
;
and X must then also coincide

with C.

Hence the axis u of the first perspective passes through C. But,

by Art. 46, this is the condition that the conics s
x ,

s2 shall have three-

point contact. This proves the theorem. Thus no distinction

need be made between three-line and three-point contact.

In the case of conics having four-line contact, it will be noticed

that the plane perspective relation connecting them is of the same

form as that connecting two conics having four-point contact.

Here again, then, four-line contact implies four-point contact and

conversely.

Examples

1. Prove that, if two conics have three-point contact at C, they also have

three-line contact at C.

2. Prove that one conic can be constructed having three-point (or three-line)

contact with a given conic at C, and touching two given straight lines in the

plane.
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3. Show that, in the plane perspective relation between a parabola and its

circle of curvature at P, in which the common tangent at P is the axis of

perspective, the tangent to the circle parallel to the tangent at P, treated

as a Mne of the parabola figure, corresponds to the parallel diameter of the

circle, in the circle figure.

4. The asymptotes of a hyperbola meet at C. If 0 is the pole of the plane

perspective which transforms the hyperbola into its circle of curvature at P,

the tangent at P being the axis of perspective, and the diameter of the circle

through P meets the vanishing line of the circle at 1, prove that 01 is parallel

to OP.

5. If, in Ex. 4, the tangent at P meets an asymptote at D, and CN is the

perpendicular from C on the tangent at P, prove that

PI=2PD 2.CN/(PD 2
-\- CN2

).

EXAMPLES IIIa

1. 0, O', A, B, C, D are six points on a conic. If (OA, 0'P)= P, (0B,0'C)

= (OC , 0'D)— R, (OD ,
0'-4) = j8f, prove that if P, Q, R, S, 0, O' lie on a

conic the rays OB, OD are harmonically conjugate with regard to OA, OC.

2. A, B, C, D, U, V are six points on a conic; prove that (UA, VC),

(UB, VD), (UC, VA), (
UD , VB) lie on a conic passing through U and V.

3. The tangents to a conic s at points A and B meet at T, and a variable

tangent meets TA, TB at X, Y respectively. If the parallelogram TXYZ
is completed, show that the locus of Z is the hyperbola through A and B
whose asymptotes are the tangents to s parallel to T

A

and TB.

4. The arms OA, OB of an angle of fixed magnitude a and of fixed vertex 0,

meet a fixed straight line at A and B, and through A and B respectively lines

AP, BP are drawn parallel to fixed directions. Show that the locus of P is a

hyperbola and find its asymptotes.

5. Two oppositely equal pencils have two different vertices. Show that

their product is a rectangular hyperbola (
i.e . one whose asymptotes are at

right angles). [Find when corresponding rays of the two pencils are parallel.]

6. Through two fixed points A, B pairs of parallel lines AP, BQ are drawn

to meet two fixed intersecting lines c, d at P, Q respectively. If cd is not in

line with A and B, show that PQ touches a fixed conic to which c and d are

tangents ; and find the points of contact of c and d. How is this result

modified if A, B and cd are collinear ?

7. A tangent to a conic at P meets a fixed tangent at Q and QR is drawn

through Q parallel to OP where 0 is a fixed point on the conic. Show that

QR touches a parabola.

8. The sides of a polygon pass through fixed points and all the vertices but

one lie on fixed lines. What is the locus of the last remaining vertex ?

9. The vertices of a polygon lie on fixed lines and all the sides but one

pass through fixed points. What is the envelope of the last remaining

side ?

10. AX, BY are drawn perpendicular to a given line AB. Two points

P and Q trace out ranges in perspective on AX and BY respectively. Prove

that the locus of intersections of AQ and BP is a hyperbola, and find the

directions of its asymptotes.
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11. Show that any two conics in a plane can be brought into a plane

perspective relation by taking one of their common chords as axis of per-

spective. [Let X Y be the common chord, A xu4 a a common tangent touching

81 at Av 8t at A t ; Z a point on X

Y

: let A XZ meet at B lt A^Z meet
at Br Take 0~(B1B2 , A x

A t )

;

then the perspective relation defined by
pole 0, axis XY and pair of corresponding points Av A t transforms 8X into

a conic through the three points X , 7, Bv and touching 0A 2 at A 2, i.e.

into *2 ‘]

12. From any point on one of their common chords tangents are drawn

to two conics, touching the conics at P, Q. Show that PQ passes through one

of two fixed points.

13. Show that any two conics sv s 2 in a plane can be brought into a plane

perspective relation by taking the meet of two of their common tangents as

pole of perspective.

14. Through the meet 0 of two common tangents to two conics a line is

drawn meeting one conic at P and the other at Q. Show that the tangents at

P, Q meet on one of two fixed lines.

15. A, B are two fixed points on any circle. Show that a point 0 and a

straight line c exist in the plane of the circle, such that, if R be any point of

the circle, and AR , BR meet c at P, Q, the angle POQ is equal to a given

angle.

[0 is the pole of perspective and c the vanishing line when the circle on

AB, containing the given angle, is brought into plane perspective with the

given circle, with AB as axis of perspective.]

16. Prove that the envelope of the harmonic polars (see Exs. IIa, 23), with

regard to a triangle ABC, of the points of a line u, not passing through A,

B, or C, is a conic which touches BC , CA ,
AB at points P, Q, R such that

AP, BQ , CR concur at the point U whose harmonic polar with respect to the

triangle is u.

17. Prove that if ABC, A'B'C' be two triangles inscribed in a conic, their

six sides touch another conic.

[For B (ACA'C')7\B'(ACA'C') ;
cut these pencils by A'C' in (DEA'C')

and by AC in (ACFO) respectively
;
then (DEA'C')~7\ (ACFG) and by Art. 42,

AD= AB, CE— BC, A'F=A'B', C'G=B'C' touch a conic which touches the

bases AC, A'C' of the ranges.]

18. Prove that if abc, a'b'c' be two triangles circumscribed to a conic,

their six vertices lie on a conic.

19. Deduce from Exs. 17, 18 Poncelet’s Theorem that if there exist one

triangle inscribed in one conic and circumscribed to another, there exist an

infinity of such triangles.

EXAMPLES IIIb

[The axes of co-ordinates are rectangular, except where otherwise stated.]

1. There are two projective pencils of rays whose centres are at the points

(1, 2) and (4, 6). The rays

y - 2= 0, 2x-y=0, x-y -\- 1 = 0

of the first pencil correspond to the rays

x-yA 2= 0, 2x- 3y+ 10=0, #-4=0

respectively of the second pencil.

Construct the ray of the second pencil corresponding to the ray
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4a;~%+2=0 of the first pencil. Construct also the tangents at the points

(I, 2) and (4, 6) to the conic which is the product of the pencils.

2. Two projective pencils of rays have their centres at (0, 0) and (1,0)
respectively. The rays y — 2x— 0, y — x—O, 3y - 2x= 0 of the first pencil

correspond to the rays a;— 1 = 0, 3y — + 4= 0, 4y - 3x+ 3~ 0 respectively.

Construct the ray of the second pencil corresponding to the ray y+2x=0
of the first pencil and sufficient points to exhibit the shape of the conic which
is the product of the pencils.

3. AB, AC are two lines inclined at 60°. AB— 2*
; AC— 4". Construct

by tangents the parabola which touches AB, AC at B and C.

4. Two projective pencils of parallel rays are given by the triads *=0,
1, 3, y— 0, —2, 1, the axes being inclined at 60°. Draw the locus of inter-

sections of corresponding rays of the pencils and construct its asymptotes.

5. Draw any two circles in contact. Verify that if tangents be drawn
to the circles from any point on their common tangent, the join of the points

of contact passes through a fixed point.

6. Given circles of radii 1 and 2 inches respectively, whose centres are

4 inches apart, construct a point O, a straight line x and a pair of points A, A'
such that, in the plane perspective relation defined by O as pole of per-

spective, x as axis of collineation and A , A' as a pair of corresponding points,

the two given circles are corresponding curves.

7. The axes of co-ordinates being inclined at 45°, two projective ranges
on these axes have the points (5, 0) and (0, 4) for vanishing points and the
points (3, 0), (0, 3) for a pair of corresponding points. Construct by tangents

the product of these ranges.

8. Draw the conic which passes through the points

(0, 0), (4, 0), (2, 2), (3, 2), (0, -2).

9. A hyperbola has one asymptote parallel to the axis of x, touches the
line x + y= 4 at the point (2, 2), and passes through the points (2, 4) and (3*25,

1*5). Draw the curve.

10. Two parabolas have the circle x 2 + y
2= 2 for circle of curvature at the

point (1, 1) and cut this circle again at the point (1, —1). Construct their

tangents at (1, — 1). Find also the directions of the points at infinity on the

two parabolas and construct the tangents perpendicular to these directions

and their points of contact. [The tangents to the circle parallel to the common
chord of curvature give two possible vanishing lines.]

11. An equilateral triangle ABC is inscribed in a circle of radius 2 inches,

and B is the middle point of AD. Find the points in which BC meets the
conic through D which has four-point contact at A with the circle ABC .



CHAPTER IV

POLE AND POLAR

48. Polar of a point with regard to a conic. Let 0 be a

fixed point in the plane of a given conic, and OAB, OPQ (Fig. 20)

two chords meeting the conic at A, B and P, Q respectively.

If we consider the conic as the product of projective pencils

through A and B, then AP, BP and AQ, BQ are corresponding

pairs in the pencils.

If (AQ, BP) = U, and (AP, BQ) = V, then UV passes through

the cross-centre K of the two pencils, which is also the intersection

of the tangents at A and B (Art. 39).

But, by the harmonic property of the complete quadrangle

ABPQ
,
VO, VU are harmonically conjugate with regard to VA,

VB.

Therefore, if OAB, OPQ meet UV at C, R respectively, C is

harmonically conjugate to 0 with respect to A, B
;

and R is

harmonically conjugate to 0 with respect to P, Q.

Now let the chord OPQ turn round 0, so that P, R, Q vary.

Since 0, A, B are fixed, K and C are fixed, hence KC (i.e . UV) is

a fixed line l. Thus R describes a fixed straight line, which is

termed the polar of 0 with respect to the conic.

Since there can be, on a given chord OPQ
,
only one point R

harmonically conjugate to 0 with respect to P, Q, the polar of 0
is uniquely determined.

As OPQ is any chord through 0, any such chord is harmonically

divided by 0 and by its polar. If P and Q coincide, R coincides

with them
;

hence the polar of 0 passes through the points of

contact T, S of tangents from 0 to the conic, when real tangents

can be drawn, that is, when 0 is outside the conic.

Note also that OAB is an arbitrary chord through 0, and the

tangents at A and B meet at K on the polar of 0. By symmetry

the tangents at P and Q also meet at N on the polar of 0.

Further, since {OACB} = - 1 ,
K{0ACB) = - 1, or KC is har-

monically conjugate to KO with regard to the two tangents KA,

KB to the conic from K.
69
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It will be noticed that the definition of the polar, as the locus

of the point R, which is harmonically conjugate to 0 with regard

to P, Q, ceases to be operative for the points of the polar on lines

through 0 which do not meet the conic in real points. Such a line

through 0 must lie entirely outside the conic, so that a point K,
at which it meets the polar of 0, lies outside the conic, and real

Fig. 20.

tangents KA
,
KB can be drawn from K to the conic. The points

of the polar of type K can then be obtained as the intersections of

tangents at the extremities of a chord OAB through 0 which does
meet the conic in real points.

In Fig. 20, 0 has been taken outside the conic, but the argument
remains the same if 0 be inside. In this case, however, every
chord through 0 meets the conic and all the points on the polar
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are outside the conic. There is here no distinction between points

of type R and points of type K.

Since the chord of contact of tangents to the conic from any

point on Z of type K passes through 0, it is evident that 0 is uniquely

determined by the intersection of such chords, when Z is given.

The point 0 is termed the pole of Z with respect to the conic, and

any line Z which is not a tangent to the conic is the polar of a definite

point not lying on Z.

An important case occurs when 0 is on the conic. In this case,

if OPQ be drawn to cut the conic, one of P, Q coincides with 0,

so that R coincides with 0. But if OPQ be drawn to touch the

conic, both P and Q coincide with 0, and R may be any point on

OPQ. Thus the locus of R is the tangent at 0. This is also

otherwise seen if we remember that the polar of 0 is the chord of

contact TS of the tangents from 0
;

if 0 approaches the conic,

the tangents OT, OS and the chord TS ultimately coincide with

the tangent at 0.

Conversely, if Z is a tangent to the conic, touching the curve

at 0, and K is any other point on Z, the chord of contact of tangents

from K passes through 0, which is thus the pole of Z.

Thus the polar of a point on the conic is the tangent at that

point, and the pole of a tangent to the conic is its point of

contact.

The relation of pole and polar is therefore a unique one
;
any

point 0 has a unique polar Z, and any line Z has a unique pole 0.

If 0 lies on Z, then 0 is on the conic and Z is the tangent at 0.

Examples

1. Show that the cross-centre of two projective pencils is the pole with

regard to their product of the join of their vertices.

2. Show that the cross-axis of two projective ranges is the polar with

regard to their product of the meet of their bases.

3. Given a point and its polar with regard to a conic and a point on the

curve, find another point on the curve.

4. Given a point and its polar with regard to a conic and a tangent to the

curve, find another tangent to the curve.

49. Conjugate points and lines. Let OC (Fig. 20) be a line

through 0 meeting the conic in real points A, B,
and the polar of

0 at C . Then 0, C are harmonically conjugate with respect to

A
y B . But this also expresses the condition that 0 is a point on

the polar of C. Hence if C is on the polar of 0, 0 is on the polar

of a
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Again let OK be a line through 0 which does not meet the conic,

but meets the polar of 0 at K. Then Fig. 20 shows that, if KA,

KB are the tangents from K to the conic, AB passes through 0.

But AB is the polar of K. Hence again, if K is on the polar of

0, 0 lies on the polar of K.

Two points which have the property that either lies on the

polar of the other are said to be conjugate points with respect to

the conic.

It is obvious that two conjugate points are harmonically con-

jugate with regard to the two intersections of their join with the

conic, when the join in question meets the conic.

Let / be the polar of a point F, g the polar of a point G. We
have seen that if / passes through G

, g passes through F. Two

lines /, g, which are such that either passes through the pole of

the other, are said to be conjugate lines with respect to the conic.

Obviously, in the above, F
,
G satisfy the condition for conjugate

points. Hence the poles of conjugate lines are conjugate points

and conversely, the polars of conjugate points are conjugate

lines.

In Fig. 20, K being any point on the polar of 0 outside the

conic, KO and the polar of 0 are conjugate lines, and we have

seen that they are harmonically conjugate with regard to the

tangents KA, KB from K.

Hence two conjugate lines are harmonically conjugate with

regard 'to the two tangents from their meet to the conic, when

the meet in question is outside the conic.

50. Inscribed quadrangle and circumscribed quadrilateral.

Self-polar triangle. If we refer again to Fig. 20, it will be

noticed that O, U, V are the three diagonal points of the complete

quadrangle ABPQ inscribed in the conic. We have proved that

UV is the polar of O. But clearly, we might equally well have

started by drawing chords AUQ, BUP through U, or chords VPA,
VQB through V. We should then have proved that OF is the

polar of U
}
or that OU is the polar of F.

The triangle OUV is therefore such that any two of its vertices,

or any two of its sides, are conjugate with respect to the conic,

and each side is the polar of the opposite vertex. Such a triangle

is said to be self-polar with respect to the conic.

Consider now the tangents a, b, p, q at A ,
B, P, Q. These form

a complete quadrilateral, of which the six vertices are /, J, K, L>

M, N (Fig. 20). Clearly, by what has been proved in Art. 48,
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the diagonalKN coincides with the side UV of the diagonal triangle

of the complete quadrangle ABPQ .

But, here again, this particular diagonal has no special relation

to the figure, and the corresponding result must hold good of the

other two diagonals. Accordingly LM lies along OTJ and 1J

along OF.

Thus the complete quadrilateral formed by four tangents

to a conic and the complete quadrangle formed by their four

points of contact have the same diagonal triangle, which is

self-polar for the conic.

Examples

1. Given a triangle self-polar for a conic and a point on the conic, show
how to determine three other points on the conic.

2. Given a triangle self-polar for a conic and a tangent to the conic, show
how to determine three other tangents.

3. Given two points A, B on a conic and the pole C of AB, construct the

tangent to the conic at any given point P.

4. Given two tangents a, & to a conic and the polar c of ab
,
construct the

point of contact of any given tangent p.

5. Prove that, of the three sides of a triangle self-polar with regard to a

conic, two meet the curve in real points and one does not.

51. Graphical constructions for pole and polar. The results

of the last Article enable us to obtain graphical constructions for

pole and polar.

To find the polar of 0, draw any two chords through 0 meeting

the conic at real points A, B, P, Q (Fig. 20). Construct the other

diagonal points U, V of the complete quadrangle ABPQ. UV is

the required polar.

To find the pole of a straight line CR (Fig. 20), take on CR
any two points K

,
N lying outside the conic. Draw from K and

N pairs of tangents to the conic a, b and p, q respectively. Construct

the other diagonals LM, 1J of the complete quadrilateral abpq .

The intersection of LM, IJ is the required pole.

52. Conjugate ranges and pencils. Let V (Fig. 21) be any

point on a given line c, whose pole is C. Then by Art. 49 the

polar u of U passes through C. Hence the polars of the range

[[/] form a pencil [u]. Conversely the poles of a pencil [u] form a

range [U].

Let now u meet any other fixed straight line a! at a point F.

Then \u\ determines on d a range [F]. Also since the polar of U
passes through F, (U, F) are conjugate points with regard to the
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conic. When U is known, V is uniquely determined and conversely.

The ranges [V] [V] are termed conjugate ranges with respect

to the conic.

The above construction clearly fails if the line d passes through

C, in which case c, d are conjugate lines, and the pole D of d lies

on c. It is therefore impossible to have conjugate ranges on

conjugate lines, for one point in each line is then conjugate to every

point in the other line.

Similarly, if the point U be joined to any other fixed point E
by a line w,w passes through the pole of u

,
so that w, u are conjugate

Fig. 21.

lines with regard to the conic. The pencils [w], [u] are said to be

conjugate pencils with respect to the conic.

As in the case of ranges, if the vertices C, E of the pencils [u],

\w] are conjugate points, no conjugate pencils can be obtained

with C, E as vertices. For the polar c of C then passes through E.

This polar is conjugate to every line u
,
and conversely the polar of

E
,
which passes through C

,
is conjugate to every line w.

We will now prove : (1) that a range is equi-anharmonic with its

polar pencil
; (2) that conjugate ranges are projective

; (3) that

conjugate pencils are projective.

In Fig. 21, let A be any fixed point on the conic. Join AC,

meeting the conic again at B. Join UA, meeting the conic again
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at P, and CP, meeting the conic again at Q. Then, by Art. 50,

since ABPQ is a quadrangle inscribed in the conic, the meet of

AP
, BQ lies on the polar c of C. Therefore BQ passes through

the meet U of c and AP. Also the meet T of AQ, BP lies on
c and CT is the side of the diagonal triangle opposite to V and is

thus the polar u of V.

But, by Art. 39, A, B being fixed points, P, Q,
V

,
T variable

points,

A[Q]-B[Q]

that is A[T]-B[U],

whence [T]~m
and therefore [U] is equi-anharmonic with the pencil C[T], i.e. [w],

since this pencil is incident with the range [T]. This proves the

first proposition.

Again, the range [F] is incident with [u]. Therefore [F] is equi-

anharmonic with [u\, and therefore with [U].

Hence [F]a[£7].

This proves the second proposition.

Finally, [w]=E[U] is equi-anharmonic with [U] and therefore

with [u]. Hence

|>]a[>].

This proves the third proposition.

Conjugate ranges or pencils may be cobasal, e.g. in Fig. 21

[U] and [T] are clearly conjugate ranges on c and C[l7], [u] are

conjugate pencils with vertex C. If c meet the conic at X, Y,

then, if V coincide with X
,
its polar u coincides with the tangent

x at X and meets c at a point T coincident with X. Hence X is

a self-corresponding point of the conjugate ranges on c . Similarly

Y is a self-corresponding point of these ranges.

Again, if x, y are the tangents from C to the conic, when u

coincides with x, U coincides with the point of contact X of x,

and CU also coincides with x. Similarly for y. Hence x, y are

self-corresponding rays of the conjugate pencils through C.

Thus conjugate ranges on a given straight line have for

self-corresponding points the intersections of the line with the

conic, and conjugate pencils through a given point have

for self-corresponding rays the tangents from the point to

the conic.
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Examples

1. If through two points A and B (which are not themselves conjugate

points) conjugate pencils be drawn with regard to a conic, the product of

these conjugate pencils is in general a conic passing through the points of

contact of the tangents from A, B to the original conic.

2. If on two lines a , b (which are not themselves conjugate lines), conjugate

ranges be taken with regard to a conic, the product of these conjugate ranges

is in general a conic touching the tangents to the original conic at the points

where the latter is met by a, b.

3. The locus of the intersections of the polars with regard to two fixed

conics of a point P lying in a given straight line is a conic.

4. If AB is a chord of a conic through a point C, T and U conjugate points

on the polar of C, prove that (AT, BU) and (A(J, BT) are points on the

conic.

5 . A, B are two fixed points on a conic, P a variable point. Prove that

AP, BP meet any line conjugate to AB in conjugate points.

53. Pole and polar properties are projective. Since poles and

polars involve only properties of incidence, and the harmonic

relation, both of which are unaltered by projection, and since

a conic projects into another conic, all the properties and construc-

tions discussed in Arts. 48-52 are projective.

Thus pole and polar project into pole and polar, conjugate points

and lines into conjugate points and lines, self-polar triangles into

self-polar triangles, conjugate pencils and ranges into conjugate

pencils and ranges, etc.

Results, however, which involve the line at infinity, or measure-

ments of angles or lengths (other than cross-ratios) do not generally

persist in projection.

54. Pole and polar with respect to a circle. Since the circle

is a particular case of a conic, all the preceding theorems on pole

and polar hold also for the circle.

Let C (Fig. 22) be the centre of a circle, P any point of the plane.

From the symmetry of the circle, the points on the polar of P,

which lie on chords through P equally inclined to CP, are them-

selves symmetrical with regard to PC. Hence the polar p of P
must be perpendicular to PC.

Let it meet CP at P', and let A, B be the extremities of the

diameter PC. Then, since P, P' are harmonically conjugate

with regard to A, B, and C is the middle point of AB
,
we have,

by Art. 28

:

CP.CP'-CA 2

Also, since chords through C are bisected at C. the harmonic
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conjugates of C with regard to the extremities of such chords lie

at infinity, so that the polar of C is the line at infinity c00 .

Denote CP by r. Then its pole R^c^p and is the point JR00

at infinity on p. All chords through R™ are parallel to p, and
therefore perpendicular to r and are bisected by r. But they are

clearly conjugate to r, since they pass through its pole.

In particular the diameter conjugate to r is perpendicular to r.

Hence the circle has the property that every diameter is

perpendicular to its conjugate diameter.

If any other point Q is taken on p ,
its polar q passes through P

and is perpendicular to CQ. Hence the rays of the pencil

formed by joining the points of a range to the centre of the

circle are perpendicular to the corresponding rays of the pencil

of polars.

Examples

1. If P, Q be any two points conjugate with respect to a circle, prove that

the circle on PQ as diameter is orthogonal to a given circle.

2. Show that the product of two pencils conjugate with regard to a circle,

the vertex of one of which is the centre, is a circle.

3. Prove that, if two circles are orthogonal, every diameter of either which
meets the other in real points is harmonically divided by that other.

4. If P and Q be points on the radical axis of two circles and P, Q be

conjugate points for one circle, they are also conjugate for the other.

[The radical axis of two circles (see Art. 112) is the locus of points the

tangents from which to the two circles are equal. It is the common chord

if the circles cut in real points.]

5. If on a fixed line u points P, P' are taken which are conjugate with regard
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to a circle, and U is the foot of the perpendicular from the centre of the

circle upon u, prove that UP.UP'= constant.

0. In Ex. 5, if u do not meet the circle in real points, show that the

oonstant= - square of tangent from U to the circle.

55. Pole and polar with respect to a line-pair and a point-

pair. If the conic be a line-pair whose components are a, b,

meeting at C, the polar of any point P is the ray p through C
harmonically conjugate to CP with regard to a

,
b. For every line

through P meets CP, p and a, b in pairs of harmonic conjugates.

Conversely consider the pole of any line. Let P, Q be two

points on that line. The polar of P is a line p through C and the

polar of Q is a line q through C. Hence the pole of PQ is C. Thus

every line not through C has C for its pole and every point not G
has its polar passing through C.

If the conic be a point-pair whose components are A, B, of

which c is the join, the pole of a line p is the fixed point through

which pass the harmonic conjugates to p with regard to the two

tangents from points of p to the conic. If Q be any point of p,

QA, QB are the two tangents from Q to the point-pair. If the

harmonic conjugate to p with regard to QA, QB be drawn, it meets

c at a fixed point P
,
which is the harmonic conjugate of pc with

regard to A and B. Hence the poles of every line other than c

lie on c.

Also the polar of any point not on c is clearly c. For AB is the

chord of contact of tangents from every such point.

56. Reciprocal polars. It appears from the previous theory

that a conic s establishes a reciprocal correspondence between the

elements of its plane, thus : to a point P corresponds its polar p,

to a line q corresponds its pole Q. To any figure in the plane, made

up of points and lines, will correspond another figure, made up

of lines and points, which are the polars and poles respectively

of the points and lines of the first figure with regard to the conic s,

which is called the base-conic.

It will also be seen that properties of incidence are preserved in

this reciprocal correspondence, for if P lies on q, p passes through

Q ;
and to the meet of two lines pq corresponds the join of their

poles PQ. Also from Art. 52 it follows that cross-ratio properties

are unaltered. Accordingly two projective ranges will reciprocate

into two projective pencils, self-corresponding points will reciprocate

into self-corresponding rays, in particular perspective ranges will
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reciprocate into perspective pencils, four harmonic points will

reciprocate into four harmonic rays
;
and conversely.

Two figures
<f>u <j>2 in plane perspective reciprocate into two

figures fa', <f
>2

' in plane perspective. For since collinear points
reciprocate into concurrent straight lines, and conversely, there-

fore, if P]P2 passes through a fixed point £7, the reciprocal lines

Pi, p2 intersect on the fixed line u' which is the reciprocal of U .

Similarly, if qX) q2 meet on a fixed line x, they reciprocate into points

Q\9 Qz such that Qi'Q2
'
passes through the fixed point X\ Hence

the figures
<f>x , <j>2 are in plane perspective, the pole and axis

of perspective being the reciprocals of the axis and pole of per-

spective, respectively, in the original figures
<f> x , <f>2 .

To a curve given as a locus of points will correspond a curve
given as an envelope of tangents : the degree of one curve—that is,

the number of points in which it is met by a straight line—becomes
the class of the corresponding curve, that is, the number of tangents
which can be drawn to it from any point. The join of two coinci-

dent points at P on the first curve, i.e. the tangent at P, reciprocates

into the meet of two coincident tangents p' of the second curve,

that is, the point of contact of p .

Consider a conic obtained as the product of two projective pencils.

The two projective pencils reciprocate into two projective ranges
and intersections of corresponding rays into joins of corresponding
points. The product of two projective pencils therefore reciprocates
into the product of two projective ranges, that is, into a conic.

Thus the reciprocal of a conic is a conic.

Let Px be the pole of p x
with regard to a conic s l5 whose reciprocal

with respect to a conic k is a conic s2 . From any point Qx of px ,

external to s
l ,

two tangents t
x ,

u
x
are drawn to sx ; let P

XQX be
denoted by qx . Then by Art. 49 {pit&Uj}^ - 1 . Now if

f*2 > are the poles of P\ 9 tx , qXi u x
with respect to k9 then,

since p x , tu ql9 u x are concurrent at Q x ,
the points P2 ,

T2 , Qfr U2
lie on the polar q2 of Qx with respect to k, and {P2T2Q2U2}

= -1.
But T2 ,

U2 are points of s2 ,
since t

x , u x are tangents to s x . Hence
Q2 lies on the polar of P2 with respect to $2 . But since qx passes
through Pl9 Q2 lies on p2 . Thus p2 and the polar of P2 with respect
to s2 both coincide with the locus of Q2 and so are identical. Hence
p2 is the polar of P2 with respect to s2i or pole and polar reciprocate
into polar and pole. It follows immediately the conjugate
points reciprocate into conjugate lines, and conversely ; also

conjugate ranges reciprocate into conjugate pencils, and conversely.
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57, Principle Of duality. It follows from the transformation

by reciprocal polars that to every theorem concerning a figure

made up of points and lines there corresponds another theorem

concerning a corresponding figure made up of lines and points

respectively, so that geometrical theorems appear in pairs. Several

instances of this principle of duality have already been met with

and it will be an instructive exercise for the student to trace such

dual theorems as have already been given. As examples of such

theorems we may quote the following, corresponding theorems

appearing side by side :

If in two corresponding figures

meets of corresponding lines lie on
a fixed line, joins of corresponding

points pass through a fixed point.

The harmonic property of the

complete quadrangle.

The meets of cross-joins of any
two pairs of corresponding points

of two projective ranges fie on a fixed

line.

The harmonic conjugates of a

fixed point with regard to the two
points at which any line through it

meets a fixed conic lie on a fixed

line.

If in two corresponding figures

joins of corresponding points pass

through a fixed point, meets of

corresponding lines lie on a fixed line.

The harmonic property of the

complete quadrilateral.

The joins of cross-meets of any
two pairs of corresponding rays of two
projective pencils pass through a fixed

point.

The harmonic conjugates of a

fixed line with regard to the two
lines which can be drawn from any
point on it to touch a fixed conic pass

through a fixed point.

Reciprocal theorems are obtained at once one from the other

by simply translating the language, the following being the

terms interchanged :

straight line

join

tangent to a curve

point of contact of a tangent

lie on
range

collinear

degree

locus

point

meet
point on a curve

tangent at a point on the curve

pass through
pencil

concurrent

class

envelope

It should be noticed, however, that theorems true of special

curves reciprocate into theorems true only of the curves which

are the reciprocals of these special curves. Also that properties

of length and angular magnitude (which are termed metrical

properties) do not generally reciprocate into like properties. It

will be found that the properties to which the principle of duality

can be applied successfully are the projective properties.

58. Centre and diameters of a conic. The pole of the line
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at infinity with regard to a conic is called the centre of the conic.

The centre of the conic corresponds, in the plane of the original

circle, not to the centre of the circle, but to the pole of the vanishing

line.

Lines through the centre of a conic are called its diameters.

Since the centre and the point at infinity divide a diameter har-

monically, a diameter is bisected at the centre.

Conjugate diameters are conjugate lines through the centre.

Hence the pole of either is the point at infinity on the other. There-

fore the tangents at the extremities of a diameter are parallel to its

conjugate.

By the pole and polar property chords parallel to a diameter

are divided harmonically by the point at infinity on the chords

and by the conjugate diameter, that is, they are bisected by the

conjugate diameter.

If C be the centre of a conic, P any point, the polar p of P with

regard to the conic is conjugate to the diameter CP and therefore

is a chord bisected by it. For if c00 be the line at infinity, clearly

pc00
,
that is, the point at infinity on p, is the pole of PC.

All diameters of an ellipse meet the curve in real points. For

the vanishing line being outside the circle, its pole is inside. Every
line through this pole therefore cuts the circle in real points, and
the same holds good after projection.

On the other hand, of two conjugate diameters of a hyperbola,

one and one only meets the curve in real points. For consider

the original circle. The vanishing line c cuts the circle in real

points I, J (Fig. 23a). The tangents at I, J meet at C, which

is the pole of the vanishing line and is outside the circle. Of the

rays through C, those which lie inside the angle ICJ meet the

circle, the others do not. Now by Art. 49 any two conjugate

lines through C are harmonically conjugate with regard to Cl,

CJ. If they meet IJ at P
,
P', P and P' are harmonically conjugate

with regard to I and J. Hence if P' be inside IJ
,
P is outside and

conversely, since P, P' divide IJ internally and externally in the

same ratio (Art. 28) ;
.\ if CP ' cuts the circle in real points, CP

does not, and conversely. Projecting IJ to infinity the property

stated follows for diameters of a hyperbola.

Also note that in the hyperbola the property that CP, CP' are

harmonicallyconjugate with regard to the tangents from C becomes :

Two conjugate diameters of a hyperbola are harmonically

conjugate with regard to the asymptotes.
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In the case of the parabola the vanishing line c touches the

original circle at C (Fig. 236), and every line CP is conjugate to c.

The centre of the parabola is therefore at infinity, and its direction

gives the point of contact of the line at infinity with the curve.

All diameters of a parabola are parallel to this fixed direction, and

are to be looked upon as conjugate to the line at infinity. The

line at infinity has no definite direction, but it may be shown

that to each diameter there is a definite conjugate direction. For

let L (Fig. 236) be the pole of CP, chords through L are conjugate

to CP. Project c to infinity : the circle becomes a parabola, CP

Fig. 23.

a diameter, the chords through L a system of parallel chords

bisected by that diameter, PL the tangent at its extremity, which

tangent is parallel to the chords. Hence a diameter of a parabola

bisects chords parallel to the tangent at its extremity.

Because the ellipse and hyperbola have an accessible centre,

they are termed central conics.

59. Supplemental chords of a central conic are parallel to

conjugate diameters. Let AB be a diameter of a conic, P any

point on the curve. Then AP
,
BP are termed supplemental

chords of the conic.

Let C be the centre
;

thus C is the middle point of AB. Join

PC meeting the conic again at Q. Then C is the middle point of
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PQ

.

Since AB, PQ bisect one another at C, ABPQ form a parallelo-

gram. The opposite sides AP,
BQ meet at the point at infinity,

V°° on AP, and the opposite sides AQ, BP meet at the point at

infinity, T00 on BP.

CT^U00 is therefore the diagonal triangle of the quadrangle

ABPQ inscribed in the conic, and so is self-polar for the conic

(Art. 50). Thus GT00
,
CE/00 are conjugate lines through the

centre, that is, conjugate diameters
;
and they are parallel to the

supplemental chords BP, AP respectively.

Conversely it is easily shown that if through the extremities

A, B of any diameter, rays AP, BP are drawn parallel to

a pair of conjugate diameters, their intersection P lies on the

conic.

We can now show that the circle is the only conic which has

more than one pair of perpendicular conjugate diameters.

For, if possible, let there be two such pairs (xx , yY )
and

(
x2 , y2 )-

Let AB be any diameter of the conic which does not coincide with

any of the four lines xY,y x ,
x2 , y2 -

By what has just been proved, if we draw, through A, AP
X

parallel to x
x
and, through B, BP

X
parallel to yx ,

P
x

is a point on

the conic. Similarly, if AP/ is parallel to y x
and BP

X
to x]f

P
x

is a point on the conic. In like manner, by drawing

parallels to x2 , y2 ,
we obtain two other points P2 ,

P2 on the

conic, which therefore passes through the six points A, B, P
x ,

Pl',P2,P2 •

But since xx , y x
are rectangular, the angles APX

B, AP
X
B are

right angles. Hence the circle on AB as diameter passes through

P
x and Px ,

and similarly also passes through P2 and P2 . The

conic and circle have therefore six points in common and must

coincide altogether.

The property, that conjugate lines through the centre are at

right angles, is therefore characteristic of the circle.

60. Axes Of a conic. An axis of a conic is a diameter per-

pendicular to its conjugate.

Note that a conic is symmetrical with regard to each axis.

For if P be a point on the curve the chord through P perpendicular

to an axis is bisected by that axis and therefore meets the curve

again at the symmetrical point P'.

Also the axes are harmonically conjugate with regard to the

asymptotes, and therefore (being perpendicular) they bisect the

angles between the asymptotes by Art. 28.
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A central conic, other than a circle, cannot have more than one

pair of axes, by the second proposition of the last Article.

To find the position of the axes of any central conic. Let C
(Fig. 24) be the centre. Draw any diameter ACB. Then, if

this diameter is perpendicular to the tangents at A and B, it is

perpendicular to its conjugate (Art. 58) and these give the required

axes.

If ACB is not perpendicular to the tangents at A and B
,
describe

the circle on AB as diameter. If we describe this circle in a pre-

scribed sense (shown by the arrows in the figure) we must cross the

conic at A (from the outside to the inside in Fig. 24). By the

symmetry of both curves about their common centre, we must

likewise cross from out-

side to inside at B.

Hence, at some point E
between A and B

,
we

must again pass from the

inside of the conic to

the outside
;
at this point

the circle and conic again

intersect.

AE, BE are then perpen-

dicular, by the property

of the angle in a semi-

circle
;

and, since they

are supplemental chords

of the conic, the diameters

parallel to them are perpendicular conjugate diameters of the

conic, and therefore are the required axes.

It is easily verified that the conic and circle intersect at a fourth

point F, which is diametrically opposite to E
,
so that AEBF is a

rectangle inscribed in the conic.

Thus for any central conic there exists one pair of axes, which

are always real.

Both axes of an ellipse meet the curve in real points ;
the longer

and shorter axes are called the major and minor axes of the ellipse

respectively.

By Art. 58, one axis of a hyperbola meets the curve in real points.

This is called the transverse axis. The axis which does not meet

the curve in real points is called the conjugate axis.

In the parabola an axis is a diameter which bisects chords
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perpendicular to itself. Since all diameters are parallel, we have

to take that one which bisects chords perpendicular to all diameters.

Hence a parabola has only one axis.

The points where an axis meets a conic are called vertices of

the curve. A parabola has only one accessible vertex.

61. Graphical construction ot an ellipse when two conjugate

diameters are given in position and length. Let AOB, COD
be the two conjugate diameters (Fig. 25). Complete the parallelo-

gram EFGH
,

of which they are median lines. Draw any line

QRQ' parallel to the diagonal EG of this parallelogram and meeting

EF
,
CD

,
GH at Q ,

R
,
Q' respectively. Join AR, BQ meeting at

P. Then P is a point on the ellipse. Since QR is parallel to a fixed

line, the ranges [Q], [/?] are similar and therefore projective. Hence

A[R]7\B[Q]. The locus of P is therefore a conic. This conic

passes through A and B, these being vertices of the two pencils.

Also if QR is along EG
, Q is at E, R is at 0, hence AB corresponds

to BE : if QR be at infinity, Q is at infinity on FE, i.e. on BA ,

R is at infinity on DC, i.e. on AF

;

hence BA corresponds to

AF. The conic locus of P touches EH at B
,
FG at A . And

it passes through C, as is obvious by taking QR through C
,
when

Q , R, P coincide at C. It has therefore five points common with

the required ellipse, viz. two coincident points at A, two at B
and one at C . Hence it is the required ellipse.

By taking lines QR between CA and BD the half of the ellipse

inside CEHD can be drawn in this way. To avoid taking distant

parallels QR and to keep the construction compact, the other half
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of the ellipse may be drawn by joining BR
f AQ' meeting at P'.

P' can be shown to be a point on the ellipse by reasoning similar

to that used above, and the same set of parallels can be employed

to complete the ellipse.

EXAMPLES IVa

1. Without using the polar property, prove directly that if p be any fixed

line in the plane of a conic, P any point on p outside the conic, t, t' the two
tangents from P to the conic, the line p

'

harmonically conjugate to p with
regard to t, t' passes through a fixed point.

2. Prove that if t be the product of conjugate pencils with regard to a

conic s which have A, B for vertices, then A

B

has the same pole with

regard to s and t.

3. Show that, if t be the product of conjugate ranges with regard to a

conic s on two straight lines a , b , then the point U where a, b meet has the

same polar with regard to s and t.

4. Two ranges of conjugate points with regard to a conic lie on straight

lines s, s'. Show that the cross-axis of the ranges passes through the poles

S, S' of the lines.

5. ABC is any triangle. A' is the pole of BC with regard to a conic, B'
is the pole of CA , C' is the pole of AB. Show that the triangles ABC

,

A'B'C' are in plane perspective.

[Use Ex. 4 noting that B, C' and B', C are pairs of conjugate points.]

6. Prove that the diagonals of a complete quadrilateral circumscribed

about a conic are divided harmonically by the diagonal points of the complete
quadrangle formed by their four points of contact.

7. Prove that the locus of a point which is such that its polars with regard

to two given conics are perpendicular, is a conic.

8. If A, B, C, 7), P are five points on a conic and P{ABCD}= - 1, show
that BD and AC are conjugate lines for the conic.

9. By reciprocation of Ex. 8, or otherwise, prove that, if a, b, c, d, t are

five tangents to a conic and t{abcd}= — 1, then bd and ac are conjugate points

for the conic.

10. The tangents to a conic at A and B meet at (7, and those at D and E
meet at F ; AB, DE meet outside the conic at 0. Show that CF meets the

conic at two real points X, Y, and that the diameter through 0 bisects X Y.

11. From points on a given straight line perpendiculars are drawn to their

polars with respect to a conic. Show that these perpendiculars envelope

a parabola which touches the given line.

12. Prove the following construction for a parabola, given a point A,
the tangent a at A, a parallel x to the axis and another point B on the curve.

Construct a parallelogram ACBD with A

B

as diagonal and BD , BC parallel

to a, x respectively. Draw LM parallel to the diagonal CD to meet BC
at X, BD at M. The meet of AL and a parallel to x through M is a point
on the curve.

13. A y B are two fixed points in the plane of a conic s. P is a point such
that the two tangents from P to 8 are harmonically conjugate with regard

to PA, PB. Show that the locus of P is a conic.
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14. State and prove the theorem obtained from Ex. 13 by reciprocation.

15. If T be any point, C the centre of a conic, N the point where the

polar of T meets the diameter through T, A a point where this diameter
meets the conic, prove that GN.GT—GA 2

.

16. If a diameter of a parabola meet the curve at P and a conjugate chord
at V, show that if T be the pole of that chord, T lies on the diameter and
PP=PF.

17. Show that if a parallelogram be circumscribed to or inscribed in a
conic its diagonals intersect at the centre of the conic.

18. Show that a conic is completely determined if two points and their

polars and a point on the curve be given.

19. Show that a conic is completely determined if two points and their

polars and a tangent to the curve be given.

20. A straight line is divided harmonically by a fixed conic s and a pair

of fixed straight lines OA, OB. Prove that the envelope of the line is a conic

s', which touches OA, OB at the points where they meet the polar of 0 with

respect to s .

21. In Ex. 20 prove that the intersections of s and s' lie on two lines through

0, which are harmonic conjugates, with respect to OA and OB, of the tangents

from 0 to s.

22. Prove the following construction for a conic, given a diameter AB,
a point P on the curve and the direction conjugate to AB. Complete the

parallelogram AI)PE on AP as diagonal and whose sides AD, DP are along

and conjugate to AB respectively. Let a parallel to DE meet PD at Q,
PE at R. The rays AR, BQ meet on the conic.

23. Two fixed tangents OT, OT' are drawn to a conic, and the tangent at

a variable point P meets them at Q ,
Q' and the chord of contact TT' at V .

Show that {PQUQ'}= — 1. What special forms does this theorem take

(1) when the fixed tangents are the asymptotes of a hyperbola, (ii) when the

conic is a parabola and one of the fixed tangents is the line at infinity ?

24. A pair of conjugate diameters of a given conic meet a given straight

line at A and B

;

on AB is described a triangle APB similar to a given

triangle. Prove that the locus of P is a hyperbola and find its asymptotes.

25. A given conic s touches two lines CA , GB at A, B respectively ; and
0 is a. fixed point in the plane, not belonging to s, GA, or GB. A variable

line through O meets AB at X, and Y is the point of OX conjugate to X
with respect to s. Prove that the locus of Y is a conic t passing through

0, G, A, B, and the points of contact of the tangents to s from 0.

Show also that the pole of OG with respect to t is the intersection of AB
and the polar of O with respect to s.

26. Through a fixed point 0 a straight line is drawn to meet a fixed straight

line l at P and intersects the polar of P with respect to a fixed conic s at Q.

Show that as P describes the straight line l, Q describes a conic passing through

three fixed points independent of the line l chosen.

Show that (1) inversion is a particular case of this construction and that

(2) when 0 lies on s the conics corresponding to two lines l of the plane

have simple contact with s at 0, but three-point contact with each other.

[P, P' are said to be inverse points with regard to 0 if (0, P, Pf being

collinear) OP.OP'— const.]
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EXAMPLES IVb

[The axes of co-ordinates are rectangular throughout.]

1. Two conjugate diameters of an ellipse are respectively 8" and 6-4'

in length and the angle between them is 1 10° ; draw the ellipse, and measure
the lengths of its principal axes.

2. Using the ruler only construct the polars of the points (1,1) and (6, 2)
with regard to the circle x2+ y

2= 9. In any manner construct the polars of
the point (3, 0) and of the points at infinity on #=0 and y=x with regard to
the same circle.

3. A conic passes through the five points (0, 0) (1, 1), (2, 1) (2*5, 0-8) (1, - 2)

;

using the ruler only, construct the polar of the point (1*5, 1*5) with regard
to this conic.

4. Draw an isosceles right-angled triangle AOC on a hypotenuse AC of
length 4 inches, and mark the middle point B of AC. With the aid of the
ruler only, construct the ray through 0 which is conjugate to OC for every
conic touching OA at A and OB at B.
Find also the pair of perpendicular conjugate rays through 0.

5. Construct a line passing through the point (3, 0) and conjugate to
£r= 0 with regard to the circle (x - 3)

2+ (y+ 2)
2— 1.

6. Construct the envelope of the polar of a point P on the circle

x2 -4x-\-y 2=0
with regard to the circle x2 + y

2= 4.

7. Draw the conic through the five points (0, 3) (0, 5) (1, 0) (4, 0) (2, 2)

and construct its axes.

8. If the pole of perspective be (1, —2), the axis of perspective x— —2,
construct the axis of the parabola in plane perspective with the circle

+ 3a:= 0, the vanishing line for the circle being #= 0.

9. A, B are the points (
— 4, 0), (3, 0) respectively. If AR be any ray

through A , P the pole of AR with regard to the circle x2 + y
2= 4, and if BP

meet AR at Q, construct the locus of Q.

10. A right circular cone of vertical angle 90° stands on a circular base

k of radius 2 inches, and is cut by a plane passing through a tangent x to

the circle k and making an angle of 30° with the plane of k.

Make a drawing showing, in rabatment, (i) the four vertices of the section,

(ii) the point P of the section which projects into an extremity of the diameter
of k parallel to x, (iii) the tangent at P, and (iv) the extremities of the
diameter of the section parallel to this tangent.



CHAPTER V

NON-FOCAL PROPERTIES OF THE CONIC

62. Pascal’s Theorem. If AB'CA'BC' (Fig. 26) be a hexagon *

inscribed in a conic, the meets of opposite sides

(AB', A’B), (BC' ,
B'C), (

CA C'A)

are collinear.

Let P = (AB', A'B) ; Q = (BC', B'C)-, R = (CA', C’A)-, L =

(AC', BA'); M = (BC’, CA').

Project the four points A', B', C, B from A, C : we have by the

property of the conic

A(A'B'CB)-kC(A'B'C'B).

Cutting the first pencil by A'B, the second by BC,

(A'PLB)-(MQC'B).

These two projective ranges have a self-corresponding point B

,

* The hexagon considered here is not generally, and in graphical examples

not conveniently, a convex figure. A similar remark applies to polygons in

general, except where the contrary is distinctly stated.

89
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they are perspective and the joins of corresponding points are

concurrent,

/. A'M, PQ}
C'L are concurrent,

.\ (A’M, C'L) lies on PQ ,
.*. R lies on PQ.

63. Brianchon’s Theorem. If ab'ca'bc' be a hexagon circum-

scribed to a conic, the joins of opposite vertices

j) = (ab', a'b), q = (bc', b'c ), r = (m', c'a

)

are concurrent.

This theorem is obtained immediately from Pascal's Theorem

by reciprocation. The student will find it instructive to construct

a proof of Brianchon’s Theorem from the proof given above of

Pascal’s Theorem, reciprocating each step.

Pascal’s and Brianchon’s Theorems are conveniently expressed

by the following numerical rule :

Pascal. If 1, 2, 3, 4, 5, 6 be the sides of a hexagon inscribed

in a conic taken in order, then 14, 25, 36 are collinear.

The line on which they lie is called the Pascal line of the inscribed

hexagon.

Brianchon. If 1, 2, 3, 4, 5, 6 be the vertices of a hexagon

circumscribed to a conic taken in order, then 14, 25, 36 are con-

current.

The point through which they pass is called the Brianchon point

of the circumscribed hexagon.

Examples

1. Show that, by altering the order of six points on a conic, sixty different

hexagons may be formed, with sixty corresponding Pascal lines.

Show that these sixty hexagons have their Pascal lines concurrent in fours

namely when they have a pair of opposite sides common.

2. Show that, in the notation of the present article for Pascal’s Theorem,
the lines (13, 46), (35, 62), (51, 24) are concurrent.

3. Show that (13, 46), (35, 62), (51, 24) are possible Pascal lines for the

six points.

4. State and prove the results corresponding to those of Exs. 1, 2, 3 for

Brianchon’s Theorem.

64. Construction of conic through five points. By means of

Pascal’s Theorem we can construct the conic through five points.

Take the points in any convenient order, letter them in this order

AB'CA'B. Number the sides AB' = 1, £'<7 = 2, CM'=3, A'B = 4.

Then P = 14 in Pascal’s Theorem is known. Draw any Pascal line

PQR meeting 2 at Q and 3 at £. Join Q to the free end of 4, viz.
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B, and R to the free end of 1, viz. A. The intersection of AR
}
BQ

is a point C' on the conic.

By taking various Pascal lines through P we can construct any
number of points on the conic.

65. Construction of conic touching five lines. Similarly let

five tangents to a conic be given. Letter them in order ab'ca’b.

Number the vertices aft'-l, b'c= 2, ca'= 3, a'6=4. Then p = 14

is a fixed line. On p take any Brianchon point B . Let q be the

join of Bto2,r the join of B to 3. q meets b the open side through

4 at the vertex 5, r meets a the open side through 1 at the vertex (>.

56 is the tangent c' to the conic.

By taking different Brianchon points on p, we can construct the

conic by tangents as an envelope.

66. Coincident elements. Important particular cases of

Pascal’s and Brianchon’s Theorems occur when two elements coin-

cide. In this case it is important to bear in mind that if the

coincident elements are points, these points have to be taken as

consecutive vertices of the Pascal hexagon and the side of the

hexagon joining them is to be interpreted as the corresponding

tangent. If the coincident elements are tangents, these are con-

secutive sides of a Brianchon hexagon, and the vertex of the hexagon

common to them is interpreted as the corresponding point of

contact.

In all cases we shall write repeated elements twice over when

considering Pascal and Brianchon hexagons, thus

AABCDD
will be considered a hexagon, and its sides taken in order are

AA (tangent at A),

AB
,

BC
,

CD
,

DD (tangent at D),

DA.

Examples

1. Given five points A, B, C, Z), E on a conic, construct the tangent to the

conic at any one of them.

2. Given five tangents a t b, c, d, e to a conic, construct the point of contact

of any one of them.
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67. Asymptote properties of the hyperbola. Let C (Fig. 27)

be the centre of a hyperbola, A°°, B00 the points at infinity on the

two asymptotes, P, Q two points on the curve. Consider the

Pascal hexagon A^A^PB^B^Q
;

its sides taken in order are as

follows : A coA co = l =the asymptote CA
;
A °°P =2= the parallel PL

to CA
;
PJ300 =3 =the parallel PM to CB

;
— 4 — asymptote

CB
;
B°°Q^ 5 =the parallel QL to CB

;
QA 00 = 6= the parallel QM

to CA.

Hence 14=CY

,
25 =L, 36=M and C, L, M are collinear, that

is, if on PQ as diagonal a parallelogram be described whose sides

A°°

are parallel to the asymptotes the other diagonal passes through

the centre.

It follows that the parallelograms PNCN\ QKCK', being made
up of LK'CN and of the complements LPN'K ', KQLN respectively,

are equal in area. Hence if through a point P on a hyperbola

parallels are drawn to the asymptotes, the parallelogram thus

formed is of constant area.

Also K'N is parallel to PQ, for the parallelograms CNLK',
LQMP are clearly similar and similarly placed. Hence if PQ
meet the asymptotes at R, S, PR =NK' =QS (opposite sides of
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parallelograms). Hence the distances intercepted on any straight

line between the curve and the asymptotes are equal.

This last property furnishes an easy method for drawing a
hyperbola when the asymptotes and one point P on the curve are

given. Draw a variable ray through P meeting the asymptotes

at R and S. On this ray take a point Q such that SQ = PR. Q
describes the hyperbola.

Care must be taken that in all cases PQ and RS shall have the

same mid-point. Thus in Fig. 27, when the ray is drawn as PR'S',

Q must be taken at Q' outside S'R' and not at Q" inside.

If the points P, Q coincide the property last proved becomes

:

the intercept of a tangent to a hyperbola between the

asymptotes is bisected at the point of contact.

If TV (Fig. 27) be drawn through P parallel to NN\ TP =NN' =
PU. Hence TV is the tangent at P.

Also the triangle TCV = twice parallelogram PNCN'
= const, by property proved above.

Hence a variable tangent to a hyperbola cuts off from the

asymptotes a triangle of constant area.

Examples

1. Deduce the results of the above Article from the property that a pair
of conjugate diameters of a hyperbola are harmonically conjugate with regard
to the asymptotes, without using Pascal’s Theorem.

2. Obtain the theorem that a variable tangent to a hyperbola cuts off from
the asymptotes a triangle of constant area by applying Brianchon’s Theorem
to the hexagon aapbbq

, a, b being the asymptotes, p, q any two tangents.

68. Construction of a hyperbola, given three points and the

direction of both asymptotes. We first of all proceed to

construct the centre.

If A, B, C be the three given points, construct the parallelograms

on AB, BC as diagonals whose sides are parallel to the asymptotes.

The centre is then the intersection of the other two diagonals (Art.

67). The asymptotes are now known in position and the hyperbola
may be constructed by the method of Art. 67.

69. Given four points on a hyperbola and the direction of

one asymptote, to construct the direction of the other

asymptote. Let A, B, C, D be the four points
;
let Z?00 be the

direction of the given asymptote, P00 that of the required asymptote.
Then, considering the hexagon ABCDE^F™, the points P= inter-

section of AB, DP00
, Q00 = intersection of BC and line at infinity,

intersection of CD, F^A are collinear. Hence if the parallel



94 PROJECTIVE GEOMETRY

through P to BC meet CD at R, AR gives the direction required.

We can now use the method of Art. 68 to construct the asymptotes

in position and hence to draw the hyperbola
;

or, considering the

hexagon ABCDE^E^, the points P
l
=(AB, DE°°), Qx = inter-

section of BC and the asymptote through E°°, Rx = {CD, E^A)
are collinear. Hence P\R\> which is known, meets BC at Qx and

the line QX
E00

is one asymptote. The asymptote through F00
is

similarly constructed.

70. Parabola from four tangents. Since the line at infinity

i
00 is a tangent to the parabola, four tangents a, b, c, d define the

Eia. 28 .

curve. Let t be any required tangent. Consider the Brianchon

hexagon i°°abcdt (Fig. 28). Let 1, 2, 3, 4, 5, 6 be the vertices i°°a,

db9
be, cd, dt, ti

00 in order, p or 14 is then the parallel through cd to

a. On this take any Brianchon point B. Join 2B meeting d at 5 :

the parallel through 5 to SB is the tangent required.

By this method we can draw a tangent to a parabola parallel to

any required direction. For draw through 3 a parallel r to this

direction to meet p at B ; B is the corresponding Brianchon point.

Also we can construct at once the direction of the axis. For

we have to find the point of contact of the line at infinity. To
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do this consider the Brianchon hexagon abcdi^i*0 . We have {ab,

di°°) {be, i00^00
)

(cd, i^a) are concurrent. Hence if the parallels

through cd to a and through ab to d meet at E and be is F, EF goes

through the point of contact of i
00

,
that is, it is parallel to the axis.

The tangent perpendicular to the axis is then constructed.

The point of contact of a tangent t is readily found when we
know two other tangents and the direction of the axis. For

consider the hexagon ttai^i^b
;

(tt, i00^00
) (

ta
,
hi°°) (at00

, bt) are con-

current. Hence through the meets of the tangent t with each

toR°° toR°°

Fig. 29.

of the given tangents draw a parallel to the other tangent. The
line drawn parallel to the axis through the intersection of these

parallels meets the tangent t at its point of contact.

Construct therefore the point of contact of the tangent per-

pendicular to the axis. This is the vertex of the parabola. The
line through the vertex in the direction of the axis is the axis.

71. Parabola from three points and direction of axis. Let

three points A, B, C be given and the point I°° on the axis, i.e. the

direction of the axis. We first construct a point D on the line

through A perpendicular to the axis (Fig. 29). Considering the

8
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Pascal hexagon ABl^l^CD we have (AB, I^C), (BI°°, CD), (I00!00,

BA) are collinear. But I00/00
is the tangent at /°° to the parabola

and is therefore the line at infinity. Thus if P is the meet of AB
and the parallel to the axis through C, Q the meet of CD and the

parallel to the axis through B, R00 the point at infinity on DA ,

then P, Q, P00 are collinear or PQ is parallel to DA. Now P is

fixed, A, B
}
C being given

;
PQ being perpendicular to the axis,

Q is found and CQ meets the perpendicular to the axis through A
at the point D required. The line bisecting AD at right angles is

therefore the axis of the parabola.

Fig. 30.

Let V be the vertex. Consider the Pascal hexagon

ABI°°I°°VC.

Then (AB, VI 00
), (BI°°, VC), (Z00/00

, CA)

are collinear. Let AB meet the axis at E, CA meet the line at

infinity at G°°, VC meet the parallel to the axis through B at F.

Then F lies on the parallel to CA through E and V lies on FC.
Thus V is known.

72. Parabola from a tangent and its point of contact, another
point and the direction Of the axis. Let a, A represent the tangent
and its point of contact (Fig. 30), B the other point, 700 the point

at infinity on the axis, M any other point on the curve.
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Two constructions may be used, according as we prefer to describe

the curve by rays through A or by rays through B.

In the first construction draw lines QR parallel to the tangent at

A to meet the parallel to the axis through B and AB at Q, R
respectively. Then AQ meets the parallel to the axis through R at

a point M on the curve. The result follows by considering the

hexagon AAMI^I^B
;
14 is P00

,
the point at infinity on the

tangent at A : P^QR is then the Pascal line.

In the second construction draw a parallel to AB to meet AB
at P' 00

,
the tangent at A at Q' and the parallel to the axis through

A at R'. Join BR' meeting the parallel to the axis through Q'

at a point M . Then M is on the parabola. For P,coQ'R' is the

Pascal line of the hexagon BAAI^I^M.

Example

Prove that, in Fig. 30, JMQ' is proportional to (AQ') 2
.

73. Inscribed and circumscribed triangles. Let ABC be a

triangle inscribed in a conic.

From the Pascal hexagon AABBCC we find

(AA, BC), (AB, CC), (BB, CA)

are collinear, or the sides of an inscribed triangle meet the tangents

at the opposite vertices at collinear points.

If abc be a triangle circumscribed about a conic, it follows in like

manner from the Brianchon hexagon aabbcc that the joins of the

vertices to the points of contact of the opposite sides are concurrent.

Example

The sides BC, CA, AB of a triangle touch a conic at the points P, Q , B
respectively. Show that

BP.CQ.AB— PC.QA .BB.

74. Carnot’s Theorem. If the sides BC
,
CA, AB of a triangle

ABC meet a conic at P, P'
; Q, Q'

;
R, R' respectively, then

BP.BP' CQ.CQ ' AR.AR f

CROP' AQ7AQ' ' BRBR'
~ 1 '

Since every conic is obtained from a circle by projection (Art. 33)

. . BP CQ AR
a
BP' CQf AR'

and the triangle ratios^ ^ ^ and are unaltered

by projection (Art. 31), it will be sufficient to prove the above

theorem for a circle.
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But since the product of segments of chords of a circle through

a given point is constant, we have in this case

AQ.AQ' -AR.AR '
;
BR.BR' =BP.BP'

;

CP.CP' =CQ.CQ',

whence the result required follows immediately.

Examples

1. Prove the converse of Carnot’s Theorem, namely that if on the sides

BC, CA, AB respectively of a triangle ABC, points P, P' ; Q, Q'
; R, R'

are taken, such that

BP.BP' CQ.CQ' AR.AR'
CP.CP' * AQ.AQ' ’ BR.BR'

then the six points lie on a conic.

2. ABC is a triangle. A conic s meets BC at Px , P2 , CA at Ql9 Q 2 , AB at

Rv R2 . Pi, P2 are harmonically conjugate to Px , P 2
with respect to B and C

;

Qi> Qz are harmonically conjugate to Qx , Q 2 with respect to C and A ; Rx , R2

are harmonically conjugate to R x, R2 with respect to A and B. Prove that

Px , P 2 , Qx , Q 2 , Rx , R 2
' ke on a conic.

3. If from two points A, B pairs of tangents {AP, AP'), (BQ, BQ') be drawn

to a circle centre O, prove that

ain BAP sin BAP '

_ OB2

sin ABQ * sin ABQ ' OA ®

4. Using the result of Ex. 3, prove that, if AP, AP' ; BQ, BQ' ; CR, CR'

be tangents to a conic from three points A, B,C,

sin PAP.sin BAP' sin CBQ.sin CBQ' sin ACR.ain ACR' _
sin OAP.sin CAP' * sin ABQ.sin ABQ' * sin BCR.sin BCR'

and, conversely, that if the above relation is satisfied, the six lines touch a

conic.

5. ABC is a triangle. From A, B, C pairs of tangents pv P 2 * Qv i

rv r2 are drawn to a conic s. p x , p 2
are harmonically conjugate to pt , p 2

with

regard to AB, AC ; with a similar notation for qx ', q2 ;
r
x , r 2 . Prove that

the six lines p x , p 2 , qx , q2 ,
r
x , r2 touch a conic.

75. Newton’s Theorem on the product of segments of chords

Of a conic. If PP', QQ' (Fig. 31) be two chords of a conic, inter-

secting at 0, and RR', SS' be two other chords intersecting at V
and parallel to PP', QQ' respectively, then

OP.OP' VR.VR'

OQX)Q'
=

VS. VS'

'

Let SS' and PP' meet at V and let «7°° be the meet of QQ' and

SS'.

Applying Carnot’s Theorem to the triangle OI/J00
,
we have

OP.OP' US. US' JvQ.J^Q'

UPJJP' ‘ J*S.J«>S' ' OQ.OQ'
~ 1 -
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But, since Q, Q', S, S', are accessible points,

J™Q : J*>S = 1 and J«>Q'
: J*S' = 1.

ml OP.OP' UP.UP'

OQ.OQ' US. US'

Considering similarly the triangle formed by PP', RR', SS', we
find

UP. UP' VR.VR'

USIJS'
=
VS.VS'*

Fig. 31.

Combining the last two results, we obtain the theorem originally

stated. Thus the ratio of products of segments of chords drawn

from a point 0 in given directions is independent of the position

of 0.

If we take V at the centre C the parallel chords are bisected at the

centre.

Hence the ratio of products of segments of chords of a

conic through any point is equal to the ratio of the squares of

the parallel semi-diameters.



100 PROJECTIVE GEOMETRY

If Q'=Q, P'=P we have : two tangents to a conic from any

point are in the ratio of the parallel semi-diameters.

76. Oblique ordinate and abscissa referred to conjugate

diameters. If the chord PP' (Fig. 31) coincide with the diameter

AA' conjugate to the chord QQ' the property of the last article takes

the form

NQ.NQ' _ CB2

NA NA ' =const - =(jA 2
’

CB being the semi-diameter conjugate to CA ; or since

NQ’= -NQ,

QN2 CB2

ANJfA '
= const -

=
CA 2

'

In Fig. 31 the conic is an ellipse, and the diameter BCB' meets

the curve in real points. Therefore CB2 is positive and AN.NA'
is positive, so that N lies between A and A'.

But if the conic be a hyperbola we know that if ACA' meet

the curve in real points, its conjugate BOB' does not meet the

curve. Hence there is no real semi-diameter CB.

Nevertheless the theorem of Art. 75 holds good and

QN2
. .

7 =a constant,
AN.NA

but N is outside AA' and the constant is negative. If we then

construct a length CB
X
such that

CB} 2 QN 2

“ CA 2 ~AN.NA '

*

and lay it off along the diameter conjugate to AA\ CB
X
may be

spoken of as the absolute length, or simply the length, of the

semi-diameter conjugate to CA* But it should be carefully

remembered that Bi is not a point on the hyperbola.

Keturning to the relation

QN 2 CB2

ANNA' CA 2

* The term absolute length will also be used, in the case of a real segment

PQ, to denote \PQ\, or the numerical length without regard to sign.
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for the ellipse, we have

QN2 (AC+CN)(NC + CA')

CB2 ~ CA 2

-(CN -CA)(CA+CN)
~ CA*

CA 2 -CN2

CA 2 ’

CN2 QN2

01
CA 2

+ CB2
~L

For the hyperbola

QN2
_ _ CA

2 -CN2

W[
2 CA2

”’

CN2 QN2

or *

CA* CBl
2
~ 1 '

In the case of the parabola A' is at infinity.

Take two chords QiQi, Q2 , Q2 conjugate to the same diameter,

QiNS Q2N2
*

AN
l
.N 1A' AN2.N2A”

QiNx
* Q2N2

* NxA\
AN

X
AN2

* N2A
' 5

now since A' is at infinity N
X
A'

:

N2A' = 1.

Hence

or

QiN^Q2N2
2

ANX

QN2

AN

AN2

constant.

This constant is known as the parameter of the chords conjugate

to the given diameter.

The above relations lead to the well-known analytical equations

of the ellipse, hyperbola and parabola referred to conjugate

directions.

77. Intersections of a conic and a circle. Let a circle meet

a conic at four points P, Q ,
R, S, and let PQ meet RS afc 0.
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Then if CL, CM are the semi-diameters of the conic parallel to

PQ, RS we have

CL2 OP.OQ

CM2 ~ Off.OS
“ L

by the property of segments of chords of a circle.

Hence the semi-diameters CL, CM are equal. Now the extremi-

ties of all equal semi-diameters lie on a circle concentric with the

conic. Thus there can be only four of them and, by the symmetry

of the conic with regard to the axes, they lie pair and pair on two

diameters equally inclined to the axes. Thus CL, CM are equally

inclined to the axes, and the common chords PQ, RS of the conic and

circle are equally inclined to the axes.

The same holds of the other pairs of opposite common chords,

viz. PS, RQ
;
PR, QS.

In particular, if a circle and conic have three coincident inter-

sections P, Q, R ,
the common chord PS and the common tangent

at P are equally inclined to the axes.

This property enables us to construct graphically the circle of

curvature at P to a given conic.

If P approaches the extremity of an axis, the common tangent

at P becomes parallel to the other axis, and PS approaches the

tangent at P. Thus S approaches P and the circle and' conic

have four coincident intersections at P. Accordingly the circle of

curvature at the extremity of an axis has four-point contact with

the conie.

Examples

1. Show how to find graphically the directions of the axes of any given

conic without first finding the centre.

2. Show that, if a circle touch a conic at A and cut it again at B and C, the

common chord BC and the common tangent at A are equally inclined to the

axes.

3. If a circle and conic have double contact, the common chord of contact

is parallel to an axis.

78. Every ellipse can be derived from a circle by an orthogonal

projection. For consider the orthogonal projection of a circle

upon any plane through a diameter x. A line perpendicular to this

axis of perspective x is still perpendicular to x after projection and

rabatment about x into the original plane, and if P be any point

of the original figure, PX the perpendicular from P on x, P' the

corresponding point of the rabatted projection, P' lies on PX and

P'X.PX^ cosine of dihedral angle 6 between the two planes.
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Thus the pole of perspective is at infinity in the direction per-

pendicular to x. The perspective relation between the circle

and ellipse figures is equivalent to a stretch (cf. Art. 13), the stretch-

ratio being cos 6.

Also because the projection is cylindrical the lines at infinity

correspond : therefore their poles, that is, the centres, correspond.

It follows that conjugate diameters of the circle project into

conjugate diameters of the ellipse : in particular x and the per-

pendicular diameter of the circle, being conjugate diameters, project

into perpendicular conjugate diameters of the ellipse, since a per-

pendicular to x remains perpendicular to x. These give the axes of

the ellipse. If a be the radius of the circle, a and a cos 0 are the

major and minor semi-axes of the ellipse.

Conversely an ellipse of semi-axes a and b (a >b) can be obtained

in this manner by projecting a circle of radius a orthogonally upon

a plane making with the plane of the circle an angle

tf^cos”
1

An ellipse being completely given by its principal axes (see

Art. 61), it follows that every ellipse can be obtained in this way

from a circle on its major axis as diameter.

The circle on the major axis of an ellipse as diameter is called

its auxiliary circle. Thus the ellipse and its auxiliary circle are

derivable one from the other by a stretch parallel to the minor

axis.

Examples

1. Show that, if P, P' be points where a perpendicular to the major axis

of an ellipse meets the curve and the auxiliary circle respectively, the tangents

at P, P' meet on the major axis.

2. Prove that an ellipse can be obtained from the circle on its minor axis as

diameter by a stretch parallel to the major axis.

79. The conjugate parallelogram. A conjugate parallelogram

is one whose sides are the tangents at the extremities of two

conjugate diameters. Clearly no real conjugate jmrallelogram can

exist, except in the case of the ellipse.

Consider the ellipse as defined by the stretch of its auxiliary

circle. Since by Art. 78 conjugate diameters correspond to con-

jugate diameters and parallel lines to parallel lines (because the

vanishing lines are at infinity) it follows that a conjugate parallelo-

gram for the ellipse corresponds to a conjugate parallelogram for the

circle.
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But a conjugate parallelogram for a circle is a circumscribed

square, because conjugate diameters of a circle are at right angles.

Now, in any stretch, corresponding areas are to one another in

the stretch ratio. For consider an elementary parallelogram

PQRS (Fig. 32) of which the sides PQ, RS are parallel to the

stretch axis and the sides PS, QR are parallel to the direction of

stretch. Let these meet the stretch axis at X
,
Y respectively.

PQRS transforms into a parallelogram P'Q'R'S' in which P'Q',

RS

'

are parallel to the stretch axis. For if A be the stretch ratio

FX = \.PX = \.QY~Q'Y and S'Y =R'Y = \.SZ.

Hence P f

S' = A(XS -XP)=\.PS

and parallelogram P'Q'R'S : parallelogram PQRS — S'P'
: SP — A.

Breaking up any area into such elementary parallelograms and

adding we see that A = ratio of

two corresponding areas.

Hence area of any conjugate

parallelogram of the ellipse

Fig. 32.

= - x area of corresponding

circumscribed square

of the auxiliary circle

b
= - .4a2 =4ah.

a

Thus the conjugate paral-

lelogram of an ellipse is of

constant area. Calling p the perpendicular from the centre on

any given tangent, d the length of the semi-diameter parallel to

this tangent, the area of the conjugate parallelogram of which the

given tangent is a side is clearly 4pd, for 2d is the base of the

parallelogram and 2p is the height. ipd^iab, i.e. pd=ab.

Examples

1. Show that the diagonals of a conjugate parallelogram are themselves

conjugate diameters.

2. Show how to construct geometrically the equal conjugate diameters of

an ellipse, given its axes.

3. Show that the area of the ellipse is 7mb.

80. Sum of squares of two conjugate semi-diameters. Let

CP', CQ

'

(Fig. 33) be two perpendicular semi-diameters of the

auxiliary circle, CP, CQ the corresponding diameters of the ellipse.
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Then CP, CQ are conjugate. Also P'PM, Q'QN are perpendicular

to the major axis.

Then from the stretch property, if
<f>
be the angle ACP\

b bPM = - P'M - - a sin
<f>
=6 sin 6

;

a a T T

b b
QN = - Q'N - - a cos <f>=^b cos <£.

a a T

CM = a cos (j) ;
GW=asin</>;

CP2 + CQ2 =CM2 +PM2 + QA2 +CN2

— a2 cos2
(f>+b

2 sin2
<f>
+ b2 cos2

<f>
+ a2 sin2

<f>

= a2 + 62 .

Hence the sum of the squares of two conjugate diameters of an

ellipse is constant.

A' N C MA
Fig. 33.

81. Pseudo-conjugate parallelogram. Let ACA' (Fig. 34)

be a diameter of a hyperbola meeting the curve at real points A, A'.

Let the tangent at A meet the asymptotes at D, E and the tangent

at A' meet them at F, G. Then, because the tangents at A
,
A'

are parallel, DEFG is a parallelogram of which the asymptotes are

diagonals.

If P be a point on the curve and PN the chord through P conjugate

to ACA' meeting ACA' at N,

PN2 CB
X
2

AN.NA'
- ~ CA 2

’

CB
l
being the absolute length (see Art. 76) of the diameter conjugate

tn AC1 A'

pm (AN\(PNm
U

AN.NA'
~ “ \A nAan) ’

If P moves off to infinity on the hyperbola in the direction of
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the asymptote CD, AP becomes parallel to CD. The triangles

(

PN\

2

) becomes equal to

ADy AN
CA) ’ a 80

A'N
aPProac^es unity.

Hence
CBy _ AD2

CA* ~ CA *

’

or CB1 =AD.
Thus the intercept of a tangent between the asymptotes measures

the absolute length of the parallel diameter. The parallelogram

DEFG is therefore a pseudo-conjugate parallelogram. Its median
lines are conjugate diameters, but only one pair of sides touches
the curve.

We have seen (Art. 07) that the area of the triangle ECD cut off

from the asymptotes by any tangent to the curve is constant. The
area of the pseudo-conjugate parallelogram DEFG is four times

the area of the triangle ECD and is therefore also constant.

If perpendicular from C on tangent at A. d =CB1 = absolute

length of diameter conjugate to CA, DE = 2d, and area of triangle

ECD = lp.2d =pd. Hence in the hyperbola as in the ellipse pd =
constant. Taking the case where the sides of the pseudo-conjugate
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parallelogram are parallel to the axes, the constant —ab where a
is the semi-transverse axis and b is the absolute length of the
conjugate semi-axis.

Further, in Fig. 34, the area of the triangle GCD is equal to that

of the triangle CDE
,
and therefore constant. Hence GD touches

at its middle point Bi a second hyperbola having the same asymp-
totes. This second hyperbola, which is also the locus of Bj, is

termed the conjugate hyperbola of the first one
;
the transverse

and conjugate axes are interchanged, in position and absolute

length, when we pass from a hyperbola to its conjugate hyperbola.

82. Difference of squares of absolute lengths of conjugate

semi-diameters of a hyperbola. From the triangle CED (Fig. 35)

we have, since CA is the median,

CD2 +CE2 =2(CA2 +AD2
)

by a well-known relation.

Also BE2 =CE2 +CD2 - 2CE.CD cos ECD
,

that is, 4AD2 = 2CA2 + 2AD2 - 2CE.CD cos ECD
,

CA 2 -AD2 -CE.CD cos ECD.or
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But CE.CD is constant since the area of the triangle ECD is

constant. Hence, the angle ECD being likewise constant,

CA 2 -AD2 = constant.

The constant is easily seen to be a2 ~b2 by taking CA, AD
parallel to the transverse and conjugate axes.

83. Rectangular hyperbola. If the angle between the asymp-

totes is a right angle the curve is called a rectangular hyperbola.

Conjugate diameters of a rectangular hyperbola are equal in

absolute length. For if DE (Fig. 35) be the tangent at A to such a

hyperbola, meeting the asymptotes at D and E ;
since the angle at

C is a right angle, the circle on DE as diameter passes through C.

Hence AC -AD. Also CA, AD, i.e. CA, CB
l
are then equally

inclined to the asymptotes (CBi having the same meaning as in

Art. 81).

In particular the transverse and conjugate semi-axes are equal

for a rectangular hyperbola.

Again consider the semi-diameter CH perpendicular to CB
X

.

Because CE, CII are perpendicular to CD, CB
l

respectively,

the angle ECH - angle DCB
l
= angle ACD. CA, CH are thus

equally inclined to the axes CX, CY and CH is therefore real

and equal to CA, that is to CBX
. Thus the absolute lengths of

perpendicular semi-diameters of a rectangular hyperbola are

equal.

The diameter CG
X
conjugate to CH makes the angle G

X
CE==

angle ECU- angle A CD. It is therefore perpendicular to CA.

We have thus a set of four diameters equal in absolute length.

Notice that this does not invalidate the result mentioned in

Art. 77 that only one diameter exists equal to a given diameter

;

and that this diameter is equally inclined to the axes with the

given diameter. For the lengths CBX , CGX
are not semi-diameters

at all, but merely the analogues of semi-diameters : they are only

called such by a convention, Bx ,
Gx

not being points on the curve.

84. Radius of curvature at a point on a conic. Since a conic

and its circle of curvature at P may be regarded as having three-

line contact along the tangent at P, they may be brought into plane

perspective by taking this tangent as the axis x of perspective, and

a certain point 0 on x as pole of perspective (Art. 47).

Denote the points belonging to the circle figure by the suffix 1,

and those belonging to the conic figure by the suffix 2.

Let Kx
(Fig. 36) be the centre of the circle, Qx

the other extremity
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of the diameter of the circle through P, R
x
an extremity of the

perpendicular diameter of the circle.

Since chords of the circle parallel to x transform into chords of

the conic parallel to x, and conjugate lines into conjugate lines, and

since PQi is conjugate to all chords of the circle parallel to x
,
PQ2

is conjugate to chords of the conic parallel to x. It is accordingly a

diameter of the conic, and the centre C2 lies on it.

Further, K2 lies on PQ2 and K2R2 is parallel to KxRi. Also

OKx
K2 , OQiQ2 >

OR
x
R2 are straight lines.

Again Q2R2 ,
Q\R\

,
being corresponding lines, meet at a point

S of x, and, since R
X
K

X
is parallel to SP, the triangles SPQ

X ,
R

l
K

iQl

are similar and SP : R\K
X
^PQ\ : K }Q X

=2 : 1, so that $P = 2.P
1
2?

1
.

Fig. 36.

Let C2N ,
K2M be the perpendiculars from C2 ,

K2 on x. We
now have, by similar triangles R2K2Q2 ,

SPQ2

R2K2 : Q2K2 =SP : Q2P =Rl
K

l
:C2P (1)

since SP = 2.R
l
Kx and C2 is the middle point of the diameter

Q2P of the conic.

Further, the triangles P^P, R2K2M are clearly in perspective

from 0, and since two pairs of corresponding sides are parallel,

the third pair by Art. 11 are also parallel and the triangles are

similar. Hence, since R\K
X
=K

X
P, we have also

R2K2 =K2M
Now, from similar triangles C2NP ,

K2MP
K2M : K2P=C2N : C2P,

(
2

)



110 PROJECTIVE GEOMETRY

that is, in virtue of (2)

R2K2 : K2P =C2N : C2P (3)

Multiplying together (1) and (3)

***** r1k1 .c2n m
q2k2.k2P c2p2 w

If the conic is a central conic, then, by Art. 76, since R2K2 is

the oblique ordinate conjugate to the diameter Q2P,

R2K2
* d2

&K^P~ ± ^P2
’

the positive or negative sign being taken according as the conic

is an ellipse or hyperbola, d being the absolute length of the semi-

diameter conjugate to C2P.

Substituting into (4), we have

R
l
K

l .C2N = ±d*

or RyKy = radius of curvature =±d2
/p,

where p is the perpendicular C2N from the centre of the conic

on the tangent at P. The interpretation of the minus sign in

the case of the hyperbola is that C2N is drawn in the sense opposite

to that shown in Fig. 36, and ]) is to be reckoned negative. The

centres of the circle and conic are then on opposite sides of the

tangent.

If P is at a vertex of the conic, the circle of curvature has four-line

contact with the conic
; 0, M ,

N then coincide with P, and K2) Q2

lie on PQ\. The proof of equation (1) still holds good
;

further,

we obtain at once, from the similar triangles R2K2P, is^ifjP, that

R2K2 : K2P =RxKx : A\P = 1 =C2N : C2P, which is identical with

(3), and leads to the same formula.

The result (4) can also be used to construct the circle of curvature

in the case of the parabola. For we may write (4) in the form

*A2 Qxp c2n
K2P

~V2li2
'Q

2P'C2P’

since QX
P = 2.RiKi} Q2P==2.C2P.

If now PQ2 meet the circle again at V (not shown in Fig. 36),

then, since the angle PVQi is a right angle, the triangles PVQi ,

C2NP are similar, and C2N : C2P^PV : Q\P, so that

R2K2
2 Q2K2 py

K2P ~ Q2P
(
6

)
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(6) holds good for any conic ; if, however, the conic is a parabola,

Q2 is at infinity, and we may write = i. Thus PV = =
QzP K2P

parameter (Art. 76) of the chords parallel to the tangent at P.

EXAMPLES Va

1. Two hyperbolas, and st, touch one another at A and have parallel
asymptotes. Show that the line joining their centre passes through A.

If any line through A meets sx again at Px and s % again at P2, prove that
the tangents at Pl9 P2 are parallel.

2. The tangents at points P, Q of a circle meet at JR, and A is any other
point of the circle. Prove that AR and the tangent at A are harmonically
conjugate with respect to AP, AQ.
Deduce that, if the tangents at points P, Q of a hyperbola meet one of the

asymptotes at L, M, then PQ meets that asymptote at the middle point of
LM .

3. P, Q, JR are three points on a parabola. A line through P parallel to the
axis meets QR at L

,

and a line through R parallel to the axis meets PQ at M.
Show thatLM is parallel to the tangent at Q.

4. If l is any given line in the plane of a parabola, and a variable diameter
meets l at L and the curve at Q, and if R is the mid-point of LQ, prove that
the locus of R is a parabola.

5. Show that the triangle formed by three tangents to a conic is in plane
perspective with the triangle formed by their three points of contact.

6. The tangents to a hyperbola at P and Q meet an asymptote at R, 8
respectively. If

(RP, SQ)=U, (SP , RQ)=V, show that UV is parallel to
this asymptote.

7. If a straight line meet a hyperbola at P and the asymptotes at Q , R,
prove that PQ.PR— square of parallel semi-diameter.

8. Show that any chord of a rectangular hyperbola subtends equal or
supplementary angles at the extremities of any diameter.

9. Obtain the following construction for a parabola by tangents, given
four tangents a , 6, c, d. On {ab, cd) take any point B . Draw through B a
parallel to a meeting c at P, and a parallel to d meeting b at Q. PQ is a
tangent to the parabola.

10. Show how to construct a parabola by tangents given three tangents
and the direction of the axis. Construct also the vertex and axis.

11. Prove that all circles touching a conic at the same point 0 have their
common chords with the conic, not passing through O, parallel to a fixed
direction.

12. If the tangent at U meet a pair of conjugate diameters at P, P', show
that PU.UP'—CD 2 where CD is the semi-diameter parallel to the tangent
at U .

13. If PP', DD' be conjugate diameters of a hyperbola in absolute length
and position and Q any point on the curve, show that QP2

-f QP'2 differs from
QD 2 -\-QD'2 by a constant quantity.

14. The extremities A, A

'

of a diameter of a rectangular hyperbola are
joined to a point P on the curve. Show that AP, A'P describe two oppositely
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equal pencils. Show also that this is not true unless A, A' are extremities ofa

diameter.

16.

A, A' are fixed points in a plane, and a point P in the plane moves
so that the bisectors of the angle APA' are parallel to fixed directions. Find

the locus ofP and show how to construct its asymptotes.

16. Find the locus of the vertices of the conjugate parallelograms of an

ellipse.

17. From a point P on a hyperbola PN is drawn perpendicular to the

transverse axis and from N a line is drawn to touch the auxiliary circle at

T. Prove that TN : PN= ratio of semi-transverse to semi-conjugate axis.

18. AA 1
is a diameter of a conic, T is a point on the tangent at A, P is the

point of contact of the second tangent from T, PN is the chord through P
conjugate to AA' meeting AA' at N, and TA' meets PN at Q. Prove that

PQ-QN.
19. Show that the six points, in which the three escribed circles of a

triangle touch the sides of the triangle when produced, lie on a conic.

20. What are the characteristic properties of a geometrical figure which

is unaltered by orthogonal projection ?

ACA', BOB' are a pair of conjugate diameters of an ellipse and P is a

point on the curve ;
AP, A'P meet BB' at Q and Q'. Show that a similar

and similarly situated ellipse can be drawn through the points Q, P, Q'

;

and that BP, B'P pass through the extremities of its diameter parallel to

AA\
21. Prove that two coplanar conics which touch at a point T correspond

in a plane perspective having for axis the common tangent t at T ; and
show that the two conics have three-line contact at T if, and only if, the pole

of perspective lies on t.

Show how to find, by a geometrical construction, the direction of the axis

of the parabola which has three-line contact with a circle c at a given point T,

and also touches a given line u.

22. Show that the central chord of curvature of a conic at P~2.CD 2/CP,

CD being the semi-diameter conjugate to CP.

23. Show that any point of a rectangular hyperbola is a point of trisection

of the intercept of the normal at the point between the centre of curvature

and the point where the normal meets the curve again.

24. Prove that through any point P of a conic, three circles of curvature

of the conic pass other than the circle of curvature at P.

[Let PQ, PQ' be chords equally inclined to axes, CB the diameter conjugate

to PQ' meeting PQ at S. P[Q]7\P[Q'] (oppositely equal) ; P[Q']7\C[B]
(conjugate) ;

.’. P[Q]~7^C[B]. The three points other than P where the conic

locus of 8 meets the original conic have their circles of curvature passing

through P, for at such points Q, B, S coincide and the tangent at Q is equally

inclined to the axes with PQ .]

EXAMPLES Vb

[The axes of co-ordinates are rectangular, except where otherwise stated.]

1. Given that the angle between the axes of co-ordinates is 75°, draw the

hyperbola having the axes for asymptotes and passing through the point

(2, 0
*6 ).

2. Draw the conic through the points (1, 1-6), (4, 0-6), (5*8, 4-3), (6, 2),

(3, 4*4) by the Pascal line method.
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3. Find graphically four additional points on the conic which passes through
the five points (0, 0), (0, 4), (2, 2), (1*41, 3*41), ( — 1*41, 0*59), and then make a
rough sketch of the curve.

4. A conic passes through the points whose co-ordinates are (2, 0), (f, I),

(4, 2), and touches the line 4y=*7(a?+ 1) at the point (f, 3), Draw the conic.

5. Draw the parabola which touches four sides of a regular pentagon
inscribed in a circle of 2" radius.

6. A hyperbola passes through the points (1, 0), (1, 3), (6, 0), (6, 4), and
has one asymptote parallel to y= 2x. Construct both asymptotes in position.

7. A hyperbola passes through the points (1, 0), (1, 1), (0, - 1), and has the
line z + «/~0 for an asymptote. Draw the tangents at the three given
points, and find one other point on each branch of the curve.

8. A hyperbola has the axis of y for one asymptote and touches the
oc y % y

lines x-\-y~ 4, " + =
1, 3~^8~ ^ons^rucf & by tangents.

9. ABC is an equilateral triangle of side 4 inches, and D is the middle point
of BC. A hyperbola passes through A, B and D, and has its asymptotes
parallel and perpendicular to AC. Construct geometrically (i) the centre,
(ii) the asymptotes, (iii) the second point in which the hyperbola meets the
line through B parallel to AD.

10. A parabola touches the line y— a; at the origin and its axis is parallel to
Ox. If it passes through the point (4, - 3), draw the curve.

11. Construct the vertex and axis of the parabola through the three
points (2, - 1), (3, 2), (6, 4) whose axis is parallel to the line 14#+ 3^=21.

12. A parabola touches the axes of co-ordinates and also the lines 2y — x=*\ 9

x — y= 2. Construct its axis, the tangent at its vertex, and the points of
contact of the four given tangents.

1 3. A parabola touches the line y= 2x+ 2 at the point (1,4) and also touches
the axes of co-ordinates. Construct (i) the points of contact of the co-ordinate
axes, (ii) the tangent at the vertex, (iii) the axis of the parabola.

14. A parabola touches the line x~y at the origin, has its axis parallel to
the axis of a;, and passes through the point P( - 1, - 4). Construct (i) the
tangent at P

,
(ii) the second point where the axis of y meets the curve, (iii) the

axis of the parabola.

15. Draw the parabola which touches three sides AB, BC, CD of a regular
pentagon ABCDE of side 1" and whose axis is parallel to the line joining C
to the middle point of AB. Construct its axis and vertex.

16. ABC is an equilateral triangle of 4" side. P is a point on AB between
A and B, distant \" from A. Q is a point on AC between A and C, distant
2-5" from A.

Construct by tangents the conic which touches AB at P, AC at Q and also
touches BC.

17. A parallelogram ABCD has sides AP=DC= 1 inch, PO= AD— 3 inches,
and the angle BAD is 60°

; E is the point on BC such that the angle ADE is

J* • ellipse touches AB, DC at A, D respectively, and passes through
E. Construct the tangent at E to this ellipse, and the second point in which
the ellipse meets BC.

a 1
^* ALA'M is a simple convex quadrilateral such that AA'~ 4", AL=2*,AM—1J , A'L=A'M— 3". An ellipse has A and A f

for the extremities of
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its major axis and passes through L. Construct (i) the tangent at L, (ii) the
second pointP in which the ellipse is met by LM, (iii) the fourth point in which
the ellipse is met by the circle A'LP.

19. Draw two straight lines OX, OY inclined at 60° ; on OX mark OA=AB=2 , and on OY mark OC=CD—DE= 1". A conic is drawn to touch
OX, OY, AE, BB ; and C is the point of contact of OY. Find the points of
contact of OX, AE and BD.

20. A hyperbola has the points (^-2, 0) for the extremities of its transverse
axis and passes through the point (5, 7). Construct its asymptotes geo-
metrically and find the absolute length of its conjugate axis.



CHAPTER VI

FORMS OF THE SECOND ORDER AND SELF-

CORRESPONDING ELEMENTS

85. Projective ranges and pencils of the second order. The

points of a conic, like the points of a straight line, may be spoken

of as forming a range, but such a range is said to be of the second

order, the linear range being considered of the first order.

Similarly the tangents to a conic are said to form a pencil of the

second order.

These are termed forms of the second order, and the conic to

which they belong is called their base.

Ranges and pencils of the second order will be denoted by

writing 2 as an index outside the bracket enclosing the typical

element : thus [P] 2
, [p]

2
.

Now a range of the second order [Pi] 2 determines, at an arbitrary

pointA of its conic base, a flat pencil A\Pi\. If we vary the position

of A on the conic, all the pencils A{P{\ are projective with one

another by Art. 37.

Similarly another range of the second order [P2]
2 determines, at

an arbitrary point B of its own base, a flat pencil B\P^\ y
and the

various pencils B\P^\, obtained by varying B,
are projective with

one another.

If now any one pencil A [Pi] is projective with any one pencil

P[P2], then this is true of all such pencils, independently of the

choice of A and B on the conics, provided the points Pj, P2 remain

unaltered. The condition in question is therefore one which

involves only the relation between the ranges [Pj]2 ,
[P2]

2 them-

selves, and, when it is satisfied, these ranges are said to be pro-

jective. It will be shown in Art. 166 that they can actually be

projected into one another.

Thus two ranges of the second order are projective if the pencils

which they determine at any points of their respective bases are

projective.

Similarly two pencils of the second order are said to be pro-

115
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jective if the ranges which they determine on any tangents to their

respective bases are projective.

From the known properties of projective pencils and ranges of

the first order given in Chapter II it follows that two corresponding

triads entirely determine the relation between two projective forms

of the second order. Also if we define the cross-ratio of four points

on a conic as the cross-ratio of the pencil which they determine at

any point of the conic and the cross-ratio of four tangents to a conic

as the cross-ratio of the range which they determine on any tangent

to the conic, then projective forms of the second order are equi-

anharmonic and conversely.

Again, as in Chapter II, two cobasal forms of the second order

cannot have more than two self-corresponding elements without

being entirely coincident.

Since four elements of a range or pencil of the second order

have a cross-ratio, they may form a harmonic set, when this cross-

ratio is equal to -1. The condition that two such elements shall

be harmonically conjugate with respect to another two is easily

obtained.

Thus, let A, B, C, D he four points on a conic
;

let AT be the

tangent at A meeting BD at T, and join AB, AC, AD. If 0 be

any point on the conic, then (A, C) are harmonically conjugate

with respect to (B, D) if 0{ABCD}
= - 1 . If we make 0 coincide

with A, the above condition becomes A{TBCD} ~ - 1 . If AC meet

BD at E, then, cutting the pencil A (TBCD) by BD, we have {TBED}
= - 1 ,

or E is a point on the polar of T . But the point of contact A
of a tangent from T is also on the polar of T. Thus the polar of T
is AE, that is, AC. Hence the pole of AC lies on BD, and the joins

of harmonic conjugates are conjugate lines for the conic.

Conversely, if ^4(7 is conjugate to BD, let the tangent at A meet

BD at T. The pole of AC lies on the tangent at A, and also (by

the property of conjugate lines) on BD. Hence it must be T,

and if AC meet BD at E,
(
T

,
E) are harmonically conjugate with

respect to (jB, D), and A{TBED}= -1, that is, A{TBCD}~ -1.

But this last is the cross-ratio of the four points A, B, C, D on the

conic, so that (A, C) are harmonically conjugate to
(
B

,
D) on the

conic.

In a similar manner, using the principle of duality, we can

show that the necessary and sufficient condition for two tangents

(a, c) to be harmonically conjugate to two other tangents
(
b, d)

in the pencil of the second order formed by the tangents to a conic.
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is that ac and bd are conjugate points with respect to the conic*

Thus pairs of tangents from conjugate points are harmonically

conjugate with respect to one another.

86. Cross-axis and cross-centre of cobasal projective forms

of second order. Let P, P
'

(Fig. 37) be two corresponding

points of two projective ranges [P]2
,
[P']2 lying on the same conic s.

Let A, A' be any given corresponding points of these ranges.

Project the range [P']2 from A as vertex, [P]2 from A! as vertex.

The pencils J[P'] and A'\P] are projective and they have a self-

corresponding ray A 'A. Hence they are perspective and rays AF,
A'P meet at V on a fixed axis x.

This axis x is independent of the choice of the points A, A'.

For let B, B' be any other pair of corresponding points. Then

by the previous result AB', A'B meet at F on x. Now consider

the Pascal hexagon AB'PA'BP '
. We have (A'B, AB') (AF, A'P)

(PB', P'B) are collinear. x is therefore the Pascal line and PB',

FB meet at W on x. The same line x is therefore reached if we

start from A and A or if we start from B and B'

.

There is thus a fixed line x on which meet the cross-joins AB',

A'B of any two corresponding pairs. This we shall call, as in the

case of linear ranges, the cross-axis.

By reciprocation, or by proceeding in a manner similar to the

above and using Brianchon’s Theorem, we reach the result that two



118 PROJECTIVE GEOMETRY

projective pencils of tangents to the same conic have a cross-

centre, through which pass the joins of cross-meets (ah', a'b) of two

corresponding pairs.

Examples

1. Directly equal ranges on a circle may be defined as ranges in which two
directly equal pencils whose vertices are on the circle meet the circle. Show
that the cross axis of two such ranges is at infinity.

2. Oppositely equal ranges on a circle may be defined as ranges in which
two oppositely equal pencils whose vertices are on the circle meet the circle.

Show that the cross axis of two such ranges passes through the centre.

87. Self-corresponding elements of cobasal projective

forms of second order. As mentioned already in Art. 85, two

cobasal projective forms of the second order cannot have more

than two self-corresponding elements
;

for if they have three, say

A, B, C and if P, P' be any other pair of corresponding elements,

{ABCP} ={ABCP’} and as in Art. 25 Pf =P .

These self-corresponding elements may be constructed as follows.

If the cross-axis of two projective ranges of the second order

[P]2
,
[P']2 lying on the same conic s meet s at points S, T (Fig. 37)

the points S
f
l

1

are self-corresponding points of the ranges [P]2
,

in2
-

For by the property of the cross-axis AT, A'T meet $ again at a

pair of corresponding points. But they both meet s again at T.

Hence a pair of corresponding points coincide at T, or T is self-

corresponding. Similarly S is self-corresponding.

If the cross-axis x is itself a tangent to s
,
the self-corresponding

points S, T coincide. If x do not meet the conic at real points,

there are no real self-corresponding points.

Beciprocating, we have the theorem : the self-corresponding

lines of two projective pencils of the second order belonging to the

same conic are the tangents from the cross-centre. There are

two real self-corresponding lines if the cross-centre is outside the

conic : these coincide if the cross-centre is on the conic. If the

cross-centre be inside the conic there are no real self-corresponding

lines.

88. Two corresponding elements of two cobasal projective

forms determine with the self-corresponding elements a constant

cross-ratio. It will be sufficient to prove this for two projective

ranges on the same conic, since all other cases can clearly be made
to depend upon this. Now from Fig. 37, if AP'

,
A'P be two chords
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meeting on ST,
then A', Pf

are corresponding points of the ranges

determined by the triads S, T, A; S, T, P. Hence, on this conic,

the cross-ratio of the four points STAA ' is equal to the cross-ratio

of the four points STPP', which proves the theorem.

89. Construction of self-corresponding points. The results

of Art. 87 provide us with a construction for determining the self-

corresponding elements of two cobasal projective forms of the first

order.

Thus let there be two projective pencils having a common vertex

0 : let aybyCy
;
a2b2c2 be ^w0 corresponding triads.

Describe any conic (in practice a circle will be a convenient conic

to use) passing through 0, and meeting ay, by, Cy, a2 ,
b2 ,

c2 at Ay,

By, Cy, A 2 ,
B2 , C2 respectively. Construct the cross-axis of the

ranges of the second order on this conic defined by AyByCy, A 2B2C2 .

This cross-axis is obtained from any two pairs of cross-joins (AyB2 ,

A 2By) and (AyC2 ,
A 2Cy).

The points S, T where this cross-axis meets the conic are self-

corresponding points of the ranges of second order. The rays OS,

OT are then self-corresponding rays of the given pencils of first order,

since corresponding rays of these pencils pass through corresponding

points of the ranges of second order.

On the other hand let there be two projective ranges on the same

straight line u, defined by corresponding triads AyByCy, A2B2C2 .

Describe any conic (here again in practice a circle) touching u .

From Ay, By, Cy, A 2 ,
B2 ,

C2 draw tangents ax , by, clf a2 , b2 ,
c2 to

this conic. Construct the meet of the joins (ayb2 ,
a2by) and

(
ayc2 ,

a2Cy). This is the cross-centre. The two tangents from the cross-

centre meet u at the self-corresponding points of the given ranges.

Otherwise thus : the two ranges may be projected from any

vertex and the self-corresponding rays of the concentric projective

pencils so formed may be found by the construction given at the

beginning of this article. They meet u at the self-corresponding

points of the ranges.

90. Intersections of a straight line with a conic given by

five points. Let 0, O', A,B,Cbz the five points on the conic, u any

straight line.

The conic is the product of the two projective pencils defined by

0(ABC), 0'(ABC).

If OA, OB, OC meet u at Ay, By, Cy and O'A, O'B, O’Q meet u

at A2B2C2 ,
the pencils 0(ABC), O'(ABC) determine upon u two
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projective ranges of which A
yBiGi, A2B2C2 are corresponding

triads.

Find the self-corresponding points of these ranges on u by
either of the methods given in the last article. Let these be

S, T . Then OS, O'S are corresponding rays of the pencils 0(ABC),

0'(ABC).

Therefore S is a point on the conic.

Similarly T is a point on the conic.

Hence S
,
T are the intersections of u with the conic.

91. Directions of asymptotes of a conic given by five points.

If in the construction of the preceding Article the line u be the line

at infinity AiBx Ci, A 2B2C2 are at infinity. Let now P be any

point of the conic, and let OP, O'P meet u00 at Pi 00
,
P2

°° respectively.

Since 0[P]tcO'[P], therefore [Pj 00
]
7\[P2

°°]. The points /S
00

,
P00

,

in which the conic meets w00
,
are then the self-corresponding points

of the projective ranges [Pi
00

], [Pa
00

]- Hence OS00
,
OP00 are the self-

corresponding rays of the projective pencils 0[Pi°°], 0[P2°°],

that is, 0[P], [p'], where p
f

is the line through 0 parallel to OP.

Now OA, OB, OC of the pencil 0[P] correspond respectively to

OA 2°°, OB2
°°, 002

°° of the pencil \p'\ Find by the method of

Art. 89 the self-corresponding rays of the projective pencils through

0 defined by these triads
;
these self-corresponding rays pass through

S°o, P00
,
and therefore give the directions of the asymptotes. The

asymptotes are then constructed in position by the method of

Art. 68.

92. Construction of the parabolas through four given points.

Let 0, O'
,
A, B be the four given points (Fig. 38). Through 0

draw any circle meeting OA, OB at A 1} B1 and the parallels through

0 to O'A, O'B at A2 ,
P2 .

Then if P is any point on the parabola and P1? P2 are the points

where OP and the parallel through 0 to O'P meet the circle, [Pi]2 ,

[P2]
2 are two projective ranges on the circle whose self-corresponding

points are the points corresponding to the points at infinity on the

curve, since when P is at infinity OP, O'P are parallel.

In the case of the parabola the points at infinity are coincident

because the line at infinity touches the curve. Hence the self-

corresponding points of the ranges [Pi] 2
,
[P2]

2 are coincident and

<vhe cross-axis touches the circle (Art. 87).

But we know one point on the cross-axis, namely the point U
where A{B2 meets A2Bl . The cross-axis is therefore either of the
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two tangents from V to the circle. The join of 0 and the point of

contact of the cross-axis with the circle gives the direction of the

point at infinity on the parabola, or the direction of the axis.

Having the direction of the axis and four points on the curve we

may construct the parabola by the method of Art. 71, or more

directly as follows. Take any point Q on the cross-axis. Join

QB2 meeting the circle at P1? QB l
meeting the circle at P2 . The

parallel through O' to 0P2 meets OPx
at a point P on the parabola.

Since two tangents can be drawn to a circle from Z7, the problem

is in general capable of two solutions. These solutions are coin-

cident if V be on the circle. In this case either Aj and B
1
(or A 2 and

B2 )
coincide, that is, three of the given points are collinear and the

conic then degenerates into two parallel straight lines, which is a

special case of a parabola ;
or else A\ and A 2 (ovBi and B2 ) coincide

;

A (or B) is then at infinity, so that three points and the direction of

the axis are given and the parabola can be drawn by Pascal’s

Theorem. If U be within the circle there are no real solutions to the

problem.

93. Rectangular hyperbola through four points. Case of

failure. The same principle will enable us to construct the

rectangular hyperbola through four given points 0, O', A, B.

Draw a circle through 0 and find the points Aj, Blf A 2 ,
B2 and the
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point V on the cross-axis by the same construction as before. Now
since in the rectangular hyperbola the asymptotes are to be at

right angles the self-corresponding rays of the pencils 0[Pi], 0[P2]
are at right angles, that is, they meet the circle at the extremities

of a diameter
;

or the cross-axis of [P
x ]
2

,
[P2]2 a diameter.

Hence join V to the centre of the circle, and we have the cross-axis

required. The joins of 0 to its intersections with the circle give

the directions of the asymptotes. Having these and four points on

the curve we can construct the curve by Art. 68 or directly from the

present construction as explained in the last article.

If V be at the centre of the circle, any diameter may be taken as

the cross-axis and an infinite number of rectangular hyperbolas

may be drawn through the four points. In this case A 2BY , A 1
B2

being diameters, OA, OB are perpendicular to 0B2 ,
0A 2j that is, to

O'P, O'A
,
or 0 is the orthocentre of the triangle O fAB. It is

easy to prove that when this is so any one of the four given points

is the orthocentre of the triangle formed by the other three.

94. Tangents from any point to a conic given by five tangents.

Let t
,
t\ a

,
b, c be five tangents to a conic.

Let A, B, C be the points where t meets a, b, c,

A\ B\ C‘ „ „ „ t
f

„ a, b, c.

Let 0 be any point in the plane.

If p be any tangent to the conic meeting t at P and t' at P',

the ranges [PJ, [P'J are projective : hence the pencils 0[P], 0[P']

are projective.

If p passes through 0, OP and OP' are coincident.

Therefore the tangents to the conic through 0 are the self-

corresponding rays of the pencils 0[P], 0[P'].

Determine these self-corresponding rays from the triads O(ABC),

0(A'B'C') by the method of Art. 89 ;
then these give the tangents

required.

EXAMPLES VIa

1. A conic passes through five points 0 , O', A, B,C. Show how to construct

graphically its intersections with any circle through 0, O' without drawing the

conic. Prove that the common chord not passing through 00' is always

real, even when the circle does not meet the conic again in real points.

2. A conic is given by five points. Without drawing the curve find a test

to determine whether it is an ellipse, hyperbola or parabola.

3. Prove that two conics can be drawn through four given points such

that their asymptotes make an angle a with one another : and show how to

construct them.
[In the construction of Art. 92 the cross-axis must cut off a constant
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arc from the circle through 0 and therefore touches a circle concentric with this
circle.]

4. Investigate the nature of the simple quadrilateral formed by four
points if it is impossible to draw a real parabola through them.

5. The lines joining a variable point P of a given conic h to two fixed
points A and B meet 1c again at Q, JR respectively. Prove that if Q 2R 2 be
any two positions of the line QR, then QJR2, Q1R1 meet at a point of the line

AB, and show that [Q]
Z7\[R] 2

.

6. In Ex. 5 prove that QR passes always through a third fixed point C
if, and only if, the triangle ABC is self-polar for L

7. Given five points on a conic draw the tangents to it from any point in the
plane.

[Find where two rays through the point cut the conic. Hence construct
the polar.]

8. Given five tangents to a conic, find its intersections with any given
straight line in its plane.

9. A^BV A 2B2 are two corresponding pairs of points of two collinear

projective ranges. Given that the self-corresponding points of the two ranges
are coincident, find the possible positions of the point at which they coincide.

10. Prove that the projective relation which transforms three real points
A, B, C of a line l into B, C> A respectively, associates the points of l in
triads P, Q, R permuted cyclically by the projective relation ; and that the
projective ranges so defined have no real seif-corresponding point.

If U, V are fixed points coplanar with l and the projective pencils defined
by U(ABC) and V(BCA) have the conic k for their product, prove that rays
U(PQR) [or V(PQR]\ meet 1c again at points P'Q'R' such that P'Q'R' corre-

spond to Q'R'P' respectively in two projective ranges on k, having l for
their cross-axis.

11. Two conics have three-point contact at 0. A ray through 0 meets the
conics again at Pl9 P2 and the tangents at Plt P2 meet the tangent at 0
at Qv Q2 . Show that the ranges [QJ, [Q 2] are projective, and have no self-

corresponding point other than 0.

EXAMPLES VIb

[The axes of co-ordinates are rectangular, except where otherwise stated.]

1. A , By C, D are four points on a straight line at unit distance apart
in order. ABC, DCA define two projective ranges. Construct the self-

corresponding points of these ranges.

2. Draw an indefinitely long line Ox, and on it take A, B, C such that
AjB=3, BC—2. Take also on Ox three points A', B', C' such that CC'—G,
CB'=10, CA'= 12. It is required to find the position of a point F on Ox
such that the cross-ratios {ABCF} and {A'B'C'F} shall he the same. Verify
your construction by algebraic calculation.

3. 0, O' are two points 4" apart : through 0 are drawn three rays OA, OB,
OC making with 00' angles of 90°, 60°, 30° (counter-clockwise) ; and through
O' are drawn three rays O'A, O'B, O'C making with O'O angles of 30°, 15°,

75° (clockwise).

Without drawing the curve construct the asymptotes of the locus of inter-

sections of corresponding rays of the projective pencils defined by the triads

O(ABC), O'(ABC),
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4. Find the directions of the axes of the parabolas which can be drawn
through the four points whose co-ordinates are

( - 0*5, - 1-5), (4, 0), ( - 0-9, - 0-4), (7-5, - 1-5).

5. Construct the rectangular hyperbola through the four points (0, 0),

(0, 2), (1, 0), (I, 3).

6. The angle between the axes of x, y being 45° a conic touches the lines

2x+ y=*2, 3x+ I0i/= 30, x+y= 5 and the axes. Without drawing the curve,

construct the two tangents to it from the point (4, — 3).

7. The following points ar6 given: 0(0, 0), 0'(3, 0), A(— 1 , 4), B(2, 2),

C(6, 5). O(ABC), O'(ABC) define two projective pencils. Construct the
rays of the first pencil which are parallel to the corresponding rays of the second
pencil.

8. M, N are the middle points of the sides AB, AD ofa square ABCD, of side

2 inches. Construct the two points in which the diagonal BD is met by the
conic which touches AB, AD at M, N respectively, and passes through C .

9. A hyperbola passes through the points (0,0), (4,0), (4, 8), (3, 3), (
— 1 ,

- 5).

Construct its asymptotes, the tangent at (0, 0), and the vertices.



CHAPTER VIT

INVOLUTION

95. Involution. Let P, P' be two distinct corresponding

elements (denoted by italic capitals, but here not restricted to mean
points) of two cobasal projective forms

<f>, cf>'.

Then in general if P be considered as an element of
<f>'

the element

of </> which then corresponds to P is not P', but some other point.

It may, however, happen that P' corresponds to P, whether

P be considered as belonging to
<f>

or as belonging to </>'. P and

P' are then said to correspond doubly.

In this case every other pair of corresponding elements Q, Q

'

also correspond doubly. For since by Art. 21 a cross-ratio is not

altered if we interchange two of its elements, provided the other

two be also interchanged,

{PPW} ={P'PQ'Q}-

But by hypothesis PP'Q
,
P'PQ' are corresponding triads of

<f> } <f>'
respectively. Hence the above equation expresses the fact

that to Q' of cf) corresponds Q of
<f
> 1 or Q, Q' correspond doubly.

Two cobasal projective forms, in which every element corresponds

doubly, are said to be in involution, or to form an involution on

their base. The corresponding elements are spoken of as mates in

the involution.

Examples

1. Show that any line through the cross-centre of two projective pencils

meets the two pencils in an involution ; find the mate of the cross-centre in

this involution.

2. Show that if 0 is any point on the cross-axis of two projective ranges

[PJ, [P2], the pencils 0[PX], 0[P 2] form an involution, and find the mate of

the cross-axis in this involution.

3. If (P, P') are mates in an involution range on a straight line, show that,

if 0 is a point outside the line, OP, OP' are mates in an involution pencil.

4. If mates in an involution pencil vertex 0 meet a conic through 0 in

points P, P' and p, p' are the tangents to the conic at P, P', show that

(P, P') are mates in an involution range on the conic, and (p, p') are mates

in an involution pencil of the second order.

125



126 PROJECTIVE GEOMETRY

5. Prove that an involution projects into an involution.

6. From the result of Ex. 1 above prove that the three pairs of opposite
sides of a complete quadrangle meet any straight line in three pairs of mates
of an involution.

7. From the result of Ex. 2 above prove that the lines joining a given
point to the three pairs of opposite vertices of a complete quadrilateral
form three pairs of mates of an involution pencil.

8. If two rays through a fixed point 0 are equally inclined to a fixed direc-
tion, show that they are mates in an involution pencil.

9. If (A) A'), (J3, B')y (C, O') be three pairs of mates of an involution, and
A, A' are harmonically conjugate with regard to B and C, prove that they
are also harmonically conjugate with regard to B' and O'.

96. Two pairs of mates determine an involution. Let
(P, P'), (Q, Q') be the two pairs of mates. Then the triads PFQ

,

P'PQ' define two projective forms which are in involution since

one pair of elements, namely P, P', correspond doubly. The
involution is therefore determined.

Note that one pair of mates is insufficient
; for two pairs of

corresponding points (P, P'), (P', P) are not enough to determine
two projective forms.

97. Double elements. Since two cobasal projective forms have
two self-corresponding elements, an involution will have two self-

corresponding elements, each of which is its own mate. These may
or may not be real.

They are called the double elements of the involution. Since

a double element is equivalent to a pair of mates, an involution is

entirely given by its double elements.

There cannot be more than two double elements, since projective

forms with three self-corresponding elements are identical.

An involution with real double elements is said to be hyperbolic ;

one which has no real double elements is said to be elliptic.

98. Any pair of mates are harmonically conjugate with
regard to the double elements. For let (P, F) be a pair of

mates
; A, B the double elements. Then the elements APBPf

correspond to AP'BP or

{APBP'}={AP'BP}.

The set APBPf
are therefore equi-anharmonic with themselves,

P and P' being interchanged : therefore (Art. 27) P and P' are

harmonically conjugate with regard to A, B.

In the above the double elements have been assumed to be distinct.

That this must necessarily be the case can be proved as follows.

Let A be a double element of an involution, P and P' any non-
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coincident pair of mates (which must exist if there is to be an
involution at all). Then the triads A

,
P, P' and A, P', P determine

the projective relation between the mates. Let now B be the point

harmonically conjugate to A with respect to P, P'. Then since,

by hypothesis, A, P and P' are all distinct, B must be distinct

from A.

But we have, since {APBP'} ={AP'BP} by Art. 27, that B
corresponds to itself in the above projective relation, so that it is a

double element of the involution, distinct from A .

It should be noticed that, in the case where cobasal projective

forms are not in involution, the self-corresponding points can

coincide without involving the disappearance of the general relation

between corresponding elements.

99. Involution on a straight line. Centre of involution.

Consider now the case of an involution on a straight line. Let 0
be the mate of the point O' 00 at infinity on the straight line. 0 is

called the centre of involution. If (P, P'),
(Q,

Q') be two pairs of

mates, we have

{0P0'«>Q}~{0'™P'0Q'},

OP.O'^Q 0,coP'.0Q
f

. OP OQ'
°r

OQ.O,COP ~ 0,<x>Q'.0P'
’ l 'G

' OQ~ OP’’

therefore OP.OP' =OQ.OQ' — constant for the involution.

If Q, Q' coincide with one of the double points A, B we have

OP.OP'=OA2 =OB2
.

In a hyperbolic involution A
,
B are real, thus OA2

, OB2 are positive

and OP.OP' is positive. Conversely, if OP.OP' is positive, A, B
are real. In an elliptic involution, however, OP.OP' is negative and
conversely.

Since OA2 =OP2
, 0 is midway between the double points.

An important particular case arises when the point at infinity

is a double point. In this case 0, the centre of involution, is itself

at infinity. If A is the other double point, then, by Art. 98, P and
P' are harmonically conjugate with respect to A ,

0°°, so that A is

the middle point of PP'.

Examples
1. Show that, if x, x' be the distances of two mates in an involution on a

straight line from a fixed origin in the line, then

Axx'+ B (x 4- x')+ C~ 0,
A, B, C being constants.

2. Prove that conjugate points with regard to a circle on a diameter form
an involution whose centre is the centre of the circle.

10
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100. Relation between the mutual distances of six points in

involution. Let (A l9 A2), (Bl9 B2), (Cl9 C2)
be three pairs of

mates of an involution.

Then {AiA2BiC{$ ={A2AiB2C2} 9

or, writing out the cross-ratios,

AjA2.BiCi A2Ai.B2C2

AxC\.B\A2 A 2C2.B2Ai

Cancelling out A 1A2 (
= - A2A 1 )

and re-arranging, we have

B\C\.C2A 2.AiB2 = — B2C2.CiAi.A 2Bi.

Now since mates in an involution have symmetrical properties,

we may, in this result, interchange the suffixes 1 and 2 belonging

to any letter A, B or C, and the result is still true. It may therefore

be stated generally in the following form,

(BC.CA.AB)
lt2
= ~{BC.CA.AB)2>ly

where
(
BC.CA.AB)

l 2 indicates any distribution of suffixes such

that a 1 and a 2 go to each letter, and (BC.CA .AB)2 \
the same

distribution with suffixes interchanged.

101. Involution flat pencil. In an involution pencil there is

no special ray corresponding to the centre of an involution range,

for no ray is the analogue of the point at infinity.

If OA, OB are the

double rays, (OP, OP ') a

pair of mates, then cutting

the pencil by a straight

line parallel to OP', which

meets the double rays at

A and B (Fig. 39), ^4J5 is

bisected at P by OP, since

OP, OP' are harmonic

conjugates with regard to

OA, OB and therefore P
and the point at infinity

on OP' are harmonic

conjugates with regard to

A } B. Hence if the parallelogram whose sides are OA, OB be

completed, its diagonals are parallel to a pair of mates.

If the double rays are at right angles, every such parallelogram

is a rectangle. Its diagonals are equally inclined to the sides of

0
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the rectangle, therefore if the double rays are at right angles, they

bisect the angles between any pair of mates.

102. Relation between six rays of an involution. Pro-

ceeding as in Art. 100, we have, if
(
OA l} OA2 ) }

(OBX) OB2), (OCi}

OC2 )
are three pairs of mates of an involution pencil,

0{^ 1^ 2S1C 1}
= 0{^ 2J 1

52C2},

and, using the expression for the cross-ratio of a pencil in terms of

the angles made by the rays (Art. 22),

sin A xOA2 .sin BxOCi sin A 2OA^sin B2OC2

sin A
1
OC

1 .sin B1OA2
~ sin A2OC2.sm B2OA{

whence

sin BiOCVsin C2OA 2 .sin A xOB2

= ~sin-B20C2.smC
f

10^ 1.sin^2^i,

and interchanging suffixes as in Art. 100 we have the general result

(sin POO.sin 00.4. sin A0B)X2
= - (sin BOC .sin 00^4.sin AOB

)2>1>

where the suffixes 1, 2 on the left-hand side indicate that a 1 and a 2

are to be assigned to each of the three letters A
,
P, 0, the order

being arbitrary.

103. Involution of points on a conic. We have already

considered (Art. 85) projec-

tive ranges on a conic. Like

other projective forms, these

will form an involution if

any one pair of corresponding

elements correspond doubly.

Let (P
,
F), (Q, Q') (Fig. 40)

be two pairs of mates in an

involution of points on a

conic s. Then in the projec-

tive ranges of the second

order which define the involu- Qf

tion, we have P, F, Q ,
Q'

V

corresponding to P', P, Q\ Q
respectively.

Now two such projective

ranges of the second order Fi0 . 40.

have a cross-axis. This we
obtain from the meets of cross-joins (PQ\ P'Q) =*A ; (

PQ
,
P'Q') =5.
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Then, by Art. 86, AB is the cross-axis and is a fixed line,

independent of the choice of P, P', Q, Q'.

Let now PP', QQ' meet at C. By Art. 48, G is the pole of AB
with regard to 8 , and is therefore a fixed point. We thus obtain

the following theorem

:

The joins of mates in an involution of points on a conic pass

through a fixed point C ,
which is called the centre of the involution

on the conic. The line AB, which is the polar of the centre of the

involution, and is also the cross-axis of the projective ranges of

the second order which lead to the involution, is called the axis of

the involution.

Clearly P and P' coincide at the point of contact of a tangent from

C to the conic. This point of contact lies on the polar of (7, that is,

on the axis of involution. Hence the double points of the involution

are the points where the axis of involution meets the conic. There

are clearly no real double points if C is inside the conic.

Conversely, if through a fixed point C, we draw lines GPP' to

meet a conic s at P, P', then PP' are mates in an involution on the

conic. For, let AA', BB' be two chords of the conic through G

;

the pairs of mates (A, A'),
(
B

,
B') define an involution on the conic.

If (P, P') be any other pair of mates in this involution, PP' passes

through the involution centre. But this is determined by the two

joins AA\ BB' and so must be identical with C. Hence PP

'

passes through G
,
that is, rays through C meet the conic in pairs of

mates of this involution.

Examples

1. Three chords A XA 2, BXB 2 , CXC2 of a circle are concurrent. If 0 be
the centre of the circle, prove the relation

sin Ji^OOg.sin iC^O^-sin £A 2OB2
= - sin J^gOC^.sin ^<72CM 2.sin £A lOB1

and similar relations.

2. If (A , B) be the double elements of an involution in which (P, P')

{Q, Q') are pairs of mates, prove that (A, B) are mates in the involutions

determined by the mates (P, Q')> (P', Q) or (P, Q), (P', Q').

3. A y B are two fixed points on a conic, P a variable point. Prove that

the condition that A[P], B[P] determine an involution on any line x is that

AB and x are conjugate with regard to the conic.

4. Prove that the locus of the middle points of the chords of a parabola

joining mates in an involution on the parabola is another parabola which
passes through the double points of the involution.

5. If Oj be a fixed point on the cross-axis x of two projective ranges [Px]
2
>

[P2]
2 on the same conic Jc

, and 01P1 meet k again at P, prove that PP2 passes

always through a fixed point 0 2 of x.



INVOLUTION 131

Show further that, if Ov 0 2 be conjugate with respect to k, the ranges

[Px]
2
, [P2]

2 are in involution.

6. 0 is a point on a conic, OP, OQ are two lines equally inclined to the
tangent at 0, meeting the conic again at P,Q. Show that PQ passes through
a fixed point on the tangent at 0.

104. Involution of tangents to a conic. By reciprocating the

theorems of Art. 103 we obtain the results : mates in an involution

of tangents to a conic meet on a fixed line, which we call the

involution axis. Also joins of cross-meets (pq,
p'q'), (pq', p'q)

pass through a fixed point, which we call the involution centre.

In this, as in other theorems on reciprocation, the reader will find

it a useful exercise to construct the proof of the reciprocal theorem

from that of the given theorem, by reciprocating each step.

The double tangents of the involution are clearly the tangents

at the points where the involution axis meets the conic. Also,

as in the case of the range, the centre and axis of involution are pole

and polar with regard to the conic.

From two pairs of mates (pp')> (QQ') centre and axis of involu-

tion are at once constructed and either of these will give the double

tangents.

Examples

1. A, B are fixed points on a fixed tangent a to a conic s. P, P' are

harmonically conjugate with regard to A, B. If p, p' be the tangents from
P, P' to 5, show that pp' lies on a fixed straight line.

2. P is a point on a fixed straight line u, which meets a conic s at A , B-
The tangents from P to 8 meet the tangent t to s parallel to the tangent at A or

B at Pv P 2 . If C be any fixed point on t, prove that

CPX+ CP 2
— constant.

105. Construction of double elements of an involution.

The property of the centre and axis of an involution of points

on a conic (Art. 103) provides a simple construction for the double

elements of an involution range on a straight line, or of an involution

flat pencil, when two pairs of mates are given.

Let (P, P')
(Q,

Q') be two pairs of mates in an involution on a

straight line x. Join the pairs of mates in this involution to a fixed

point O outside x
;
we obtain an involution flat pencil in which

(OP, OP') (OQ, OQ') are pairs of mates, the double points A, B
of the given involution corresponding to the double rays OA, OB
of the involution pencil.

Describe any conic h, which is conveniently taken to be a circle,

through O. Then the involution flat pencil with vertex 0 determines
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an involution range on k. If OP, OP', OQ, OQ

'

meet k again at

Pi, P\> Qi> Qi respectively, then (P
x ,
P

x ) (Ql9 Qx )
are pairs of

mates in the involution on k

,

and the double points A
x ,
B

1
of this

last involution are the points where OA
, OB meet k again.

Construct the axis of the involution on k

,

by joining PiQ\,

P\Qi meeting at X
,
and PXQX ,

Px Qi meeting at Y. Join XY

,

then, by Art. 103, XY is the axis required, and meets k at A
x ,
B

x
.

These being known, OA
x
and OB

x
meet x at the double points

A, B of the given involution.

If, instead of being given an involution range on a straight line,

we are given an involution flat pencil with vertex 0, and two pairs

of mates (p, p'), (q ,
q') of this pencil, all we have to do is to use

the latter part of the previous construction, P
x ,
Px , Q x , Qx

being the points at which p, p', q ,
q' meet any conic k passing

through 0. Then OA
x ,
OB

x
give the double rays of the involution

flat pencil.

106. An involution is elliptic or hyperbolic according as a
pair of mates are, or are not, separated by any other pair of

mates. Consider first an involution on a circle k, in which (Pls Px )

(Qi, Qi) (Fig. 41) are pairs of mates.

If Qx
and Qx

lie on opposite arcs bounded by P
x ,
P

x
(Fig. 41 (a)),

they are separated on the circle by P
l9 P x ,

and conversely, Pl9 Px

are separated by Ql9 Qx . In this case PiPYi Q\Qi meet at a point

C inside the circle. But C is the centre of the involution, and the

double points are the points of contact of tangents from C . Since C
is inside the circle, no real tangents can be drawn from C to the

circle, and the involution on the circle has no real double points and
is elliptic.

If, on the other hand, Qx
and Qx lie on the same arc bounded

by PX9 Pi (Fig. 41 (6)), Px
P\ and QiQx meet outside the circle.

Beal tangents can be drawn from C to the circle and their points of

contact give real double points, so that the involution is hyperbolic.

Similarly a pair of points Q ,
Q' of a straight line x are said

to be separated by the pair P, P' (Fig. 41 (a)), if one of Q, Q' lie in

the finite segment PP' and the other outside this segment. In this

case the pair P, P' are also separated by Q, Q'.

If 0 be any point not lying on x, the lines OQ, OQ' are separated

by the lines OP, OP' if, and only if, the points Q, Q' are separated

by P, P'.

Further, if a circle k through 0 be met again by OP, OP', OQ, OQ'
at P

l9
Px , Qi' respectively, then, on the circle, P

l9 Px

'

are
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separated by Qh Qx

'
if, and only if, in the pencil through 0, the

lines OP, OP' are separated by OQ, 0Q
f

.

The involution determined on the original line by the pairs

(P, P') and (Q, Q') is projected from 0 by the involution pencil in

which OP, OP' and OQ
,
OQ' are pairs. This determines on the

circle k the involution range in which (Ph P{) and (Qh Qi) are

pairs of mates. Any double point of the involution on the circle is

projected from 0 by a double ray of the involution pencil, cutting

the line £ at a double point of the first involution. These three

involutions are therefore elliptic or hyperbolic together. They are

elliptic if, and only if, on the circle, Ph P x

'

are separated by Qlt Qx
'

;

in which case OP, OP' are separated by OQ, OQ' and P, P' are

separated by Q, Q\

Finally consider an involution on a general conic, where (P, P')

(Q, Q
f

)
are two pairs of mates. Projecting this involution by an

involution pencil through any point 0 on the conic, the involution

on the conic and the involution pencil are elliptic and hyperbolic

together. The points P, P' will be said to be separated on the

conic by Q ,
Q', if the rays OP, OP' in the pencil are separated by

OQ, OQ'.

In the case where the conic is a hyperbola and P, P' are points

on opposite branches, it is impossible to obtain a continuous arc

joining P, P'. In this case, if Z 00
,
J00 are the points at infinity

on the asymptotes, the two arcs from P to Z00 on one branch and

from I00 to P' on the other branch form together one arc PP'

;

and the two arcs from P to J00 on the first branch and from J00 to P'
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on the second branch form together the complementary arc PP'. If

Q,
Q

'

are to be separated by P, P', Q must lie on one, and Q
f on the

other, of these two arcs PP'.

107. Common mates of two cobasal involutions. Consider

two involution ranges on the same conic : the problem is to find

their common mates, if any. It is clear that every other case can

be reduced to this one. For two involution ranges on the same
straight line can be projected from any point 0 by two concentric

involution pencils, and two such pencils meet a conic through 0 in

two involutions on the conic. Again, two involutions of tangents

to a conic determine corresponding involutions of their points of

contact. If, therefore, we find the common mates of two involu-

tions of points on a conic, these will enable us to construct the

common mates in the other cases.

Now let V and V (Fig. 42) be the centres of the two given involu-

tions of points on the conic Jc. Join UV, meeting the conic at P, P'.

Then, since PP' passes through both V and F, P and P' are clearly

mates in both involutions, and moreover, are the only points which
satisfy the condition.

The problem has therefore a real solution if UV meets the conic h

in real points. This always happens if one at least of U or V lies

inside the conic, that is, if one of the given involutions is elliptic.
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If both the given involutions are hyperbolic, and A x , Bx ;
A2 ,

B2

are their double points, then A XBX ,
A2B2 are the polars of V, V

with respect to k . Their intersection T is then the pole of VV
and the common mates are the points of contact of tangents from

T. But these are the double points of the involution upon k defined

by the pairs of mates (A l9 Bx ), (A2 ,
B2 ). These double points are

real if the last-named involution is hyperbolic, that is, if A
x ,
B

x

are not separated by A 2f B2 (Art. 106). If, however, A lf Bx
are

so separated, T lies inside k and there are no real common
mates.

108. Harmonic pairs of mates. If
(
P

,
P'), (Q> Q') are two pairs

of mates in an involution (of any kind) such that
(Q ,

Q') are

harmonically conjugate with respect to
(
P

,
P'), then these two

pairs will be said to be harmonic pairs, and either is harmonic to

the other.

We will now show that, in every elliptic involution, any given

pair of mates has one harmonic pair and one only.

As before, it will be sufficient to prove the proposition for an

involution of points on a conic k.

In Fig. 42, let 0 be the centre of an elliptic involution upon k
;

then 0 lies inside k. Let (A ly
B

x )
be any given pair of mates in this

involution, and let ZJ be the pole of A
x
Blf then A x ,

B
x
are the double

points of the involution of which TJ is the centre. Join OU meeting

k at P, P'. Then P, P' are mates in the involution of centre 0
;

but they are also mates in the involution of centre U,
and so are

harmonically conjugate with respect to A lf B x . Hence they form a

pair harmonic to (A x ,
B

x ).

Also there can be no other pair harmonic to (A lf Bx ), for such a

pair must be mates in the involution in which A x ,
B

x are double

points, and therefore must lie on a line through V
;
and since they

must also lie on a line through 0, they must lie on OU.

If the given involution were hyperbolic, so that its centre is

outside k
}
as T in Fig. 42, then, if A x ,

B
x
are real, U must also lie

outside k. Now, since T lies on the polar of U, T and U are con-

jugate points for the conic. But, if the line joining two such

conjugate points were to meet the conic at real points Q, R,
then,

of T and U, one must lie inside and one outside QR, so that one at

least would have to be inside the conic, which is not the case. Hence

TV cannot meet k in real points and the pair (A x ,
B

x )
has no real

harmonic pair.
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109. Rectangular involution. Rays at right angles through

a point 0 determine an involution pencil through 0

.

For, let OP,

OP' be two rays at right angles. Clearly, if OP' be obtained

from OP by a rotation through a right angle in a definite sense,

the pencils 0[P], 0[P'] are equal, and therefore projective (Art. 24).

Rut, if we now take OP' as OQ and find the corresponding ray

OQ', it will be in the same straight line as OP. Thus the elements

of the projective pencils 0[P], 0[P'] correspond doubly, and they

form an involution pencil. Such an involution is clearly elliptic,

for each double ray must be at right angles to itself, a condition

which cannot be satisfied by any real lines.

Because a rectangular involution is elliptic, it has real common

mates with any concentric involution pencil (Art. 107). Thus in

every involution flat pencil which is not rectangular there exists

one real pair of mates at right angles.

There can, however, be one such pair only, for if two pairs of

mates of an involution are rectangular, the involution to which they

belong is altogether rectangular, since it is uniquely determined

by the two pairs of mates, and the rectangular involution clearly

satisfies the requirements.

An elliptic involution range on a straight line x can be projected,

from a point outside its base, by a rectangular involution pencil.

For, let (P, P') (#, Q') be two pairs of mates, which determine the

involution range. Describe circles on PP', QQ' as diameters. Since

the involution is elliptic, P, P' are separated by Q ,
Q' and the circles

intersect at real points C, D, symmetrically situated with regard

to x . The pencil obtained by joining C to the pairs of the involution

range on x is an involution pencil, in which (CP, CP') and
(CQ ,

CQf

)

are pairs of mates. But, from the property of the angle in a semi-

circle, CP and CP' are perpendicular, and so also are CQ and CQ'.

Thus the involution pencil through C is rectangular. The same

applies if we project from D.

If the original involution is hyperbolic, the circles on PP', QQ'

as diameters do not intersect in real points. Clearly no hyperbolic

involution range can be incident with any elliptic involution pencil,

and, in particular, itcannot be incidentwitha rectangular involution.

110. The Fr4gier point. An involution flat pencil whose

vertex is on the conic determines an involution of points on the conic.

In particular, if the involution pencil be rectangular, we reach

the following theorem. If 0 be any point on a conic, OP, OP'

two perpendicular chords, meeting the conic at P, P' respectively,
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PP

’

passes through a fixed point F. Taking P coincident with 0,

OP, OP’ are the tangent and normal at 0 and PP’ coincides with

the normal at 0. The fixed point F therefore lies on the normal

at O. The point is called the Fregier point from its discoverer.

If the conic be a rectangular hyperbola and OP, OP’ be drawn

parallel to its asymptotes, PP’, and therefore the Fr6gier point, is at

infinity. In any other position, therefore, PP’ is parallel to the

normal at 0. Thus if on any chord PP’ of a rectangular hyperbola

as diameter, a circle be constructed meeting the curve at 0, O’

the normals at 0
,

0’ are parallel to PP’.

Examples

1. Show that in any conic if 0, G' be the points where the normal at P
meet the axes, F the Fregier point corresponding to P, then P, F are har-

monically conjugate with regard to 0, O'.

2. Show that in a parabola the locus of the Fregier point is another parabola,

equal to the given one.

3. Given two points A, B on a conic, find two other points P, Q on the

conic such that A and B shall lie on a circle of which PQ is a diameter.

[P, Q are the intersections with the conic of the line joining the Fregier

points corresponding to A and B.]

111. Involutions of conjugate elements with regard to a

conic. The two collinear projective ranges formed by associating

with each point of a line its conjugate point with regard to a conic

(Art. 52) define an involution, since, from the symmetry of the con-

jugate relation, two corresponding points correspond to each other

doubly. The double points of this involution are the points where

the straight line meets the conic.

Similarly conjugate lines through a point form an involution

of which the double rays are the tangents from the point.

In particular conjugate diameters form an involution, of which

the double rays are the asymptotes.

Since the involution of conjugate diameters has one real pair

of mates at right angles and one only, we obtain a new proof of the

theorem of Art. 60 that a conic has one, and only one, pair of axes.

Example

Show that two concentric conics have one pair of common conjugate

diameters and that these are always real if one of the conics is an ellipse.

The tangent at P to a conic meets a concentric conic at Q , R. Show
how to find P so that QR shall be bisected at P.

112. Radical axis Of two circles. Let there be two circles in

a plane, with centres A and B (Fig. 43), and radii a, b respectively.
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From a point P of the plane let any lines PQR, PST be drawn,
meeting the circles at Q, R and S, T respectively.

Consider the locus of P if PQ.PR = PS.PT.
Let PX be the perpendicular from P on AB

, and let 0 be the

middle point of AB.
By a well-known property of the circle

PQ.PR =AP2 -a2 =AX2 +XP2 - a*,

PS.PT =BP2 -b2 =BX2 +XP2 - b2,

so that, if PQ.PR = PS.PT
,

AX2 -BX2 = a2 - b2
,

(AX-BX)
(.AX+BX)=a2 -b2

,

or 2.AB.OX=ct2 -b2
.

Thus OX is constant, X is a fixed point of AB
,
and the locus of

P is a fixed straight line, namely the perpendicular through X to

AB.

This locus is termed the radical axis of the two circles. Since

PQ.PR =PU2
, and PS.PT =PV2

, where PU, PV are tangents

from P to the circles, we have PU=PV, so that tangents to two
circles from any point of their radical axis external to the circles are

equal.

If the two circles meet at real points C
,
D

,
the tangents from C

(or D) to both circles are zero, and therefore equal, so that C, D
are points on the radical axis, which is then the common chord of

the circles.

An important limiting case arises when one of the circles is a

point-circle, that is, a circle of zero radius. In this case there is

still a radical axis. If L (Fig. 43) is such a point-circle, PL is the
tangent to L from P, and the condition for P to be on the radical

axis of L and the circle centre A is that PL2 =Pf72 = PQ.PR.
Since PL2 is here essentially positive, the radical axis then lies

entirely outside the circle centre A.

113. Coaxal circles. A set of circles which are such that all

pairs of the set have a common radical axis are termed coaxal

circles.

The centres of such circles all lie on a fixed line. For let PX
(Fig. 43) be the given radical axis, A the centre of a given circle of

the set. Then, if B is the centre of any other circle of the set, AB
is perpendicular to PX and is fixed, since A and PX are given.

If the radical axis meets one of the circles of the set at (7, D>
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then CD must be the common chord of this circle with every other

circle of the set, and the coaxal circles form a system of circles

passing through two fixed points. If, on the other hand, the

radical axis does not meet any circle of the set in real points, then

no circle of the set intersects any other, and the radical axis is

external to every circle of the set.

By Art. 112 the tangents from a point P to every circle of a

coaxal system are equal. If, with P as centre, and radius equal to

the tangent PU from P to any given circle of the system (that with

centre A in Fig. 13), a circle be described, this circle passes through

ail the points of contact of tangents from P to the circles of the

system and therefore cuts all these circles orthogonally. Such

circles, centre P, therefore form a system orthogonal to the given

system of coaxal circles.

This orthogonal system of circles is itself a coaxal system. For if

A is the centre of the circle 7c x of the original system, the tangent

from A to any orthogonal circle is the radius AU of the circle

All such tangents from A to circles of the orthogonal system are

equal. Similarly, if B is the centre of a circle k2 of the original

system, the tangents from B to circles of the orthogonal system are

equal to the radius of Ic2 . Thus AB is the common radical axis

of circles of the orthogonal system.

Consider now the case where a circle of the original system reduces

to a point-circle, say L. Clearly L must lie on the line of centres.

Also XL is equal to the length of the tangent from X to any circle
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of the original system. Hence L lies on a circle centre X, whose

radius is equal to the length of the above tangent. This circle,

when it is real, meets AB at two points P, M symmetrically situated

with respect to X. These are called the limiting points of the

original set of coaxal circles.

The limiting points are real if X is outside the circles of the

original system, that is, if these circles have no real intersections.

In this case the circles of the orthogonal system all pass through

L, M> and form a set of coaxal circles with real intersections.

If, however, the circles of the original system have real inter-

sections C and D, X is the middle point of CD and internal to every

one of these circles. No real tangent from X to these circles can be

drawn, and there are no real points L
,
M.

In the latter case the common radical axis AB of the orthogonal

system does not meet the circles of this system in real points.

Further, if we take P at C ,
or D, the corresponding length of

tangent to the circles of the original system (which pass through

C and D) is zero, so that C, D are point circles, that is, limiting points,

of the orthogonal system.

Thus two orthogonal sets of coaxal circles are such that

:

(i) their lines of centres are at right angles ; (ii) one only has

real intersections, which are real limiting points of the other.

114. Coaxal circles determine an involution on any straight

line. Let y be the common radical axis of a system of coaxal

circles. Let.# be any straight line, meeting y at 0 and any two

circles of the system at P, P', Q ,
Q'.

Then, by the defining property of coaxal circles, since 0 is on the

radical axis

op.op'=oq.oq\

Accordingly the product OP.OP' is constant, and the points P, P'

are mates in an involution range on x
,
whose centre is 0 (Art. 99).

If 0 is outside the circles this product is positive, and the involu-

tion is hyperbolic
; its double points are then the points of contact

of the circles of the system which touch x.

If 0 is inside the circles, the product is negative and the involution

is elliptic and has no real double points.

Examples

1. Prove that the radical axes of a given circle, not belonging to a given

coaxal system, with the circles of this coaxal system are concurrent.

2. Two systems of coaxal circles have the same radical axis, and Ov 02
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are the limiting points of the two systems on one side of this axis. A circle ct
of the first system passes through 0 2 , and a circle ca of the second system
passes through Ov If O^O2 meet the oircles cx, c2 again at Qv Qz and the

common radical axis at P, prove that

PQvPQ 2~P0vP0 2 .

3. If a set of circles be drawn, each passing through a pair of mates of an
involution on a straight line, the radical axes of these ciroles taken in pairs all

pass through one fixed point.

4. If two straight lines meet three circles in three pairs of points of an
involution, the three circles have, in general, a common radical axis. Discuss

the case of exception.

5. If coaxal circles have real intersections, prove that these intersections

are the points from which the involution determined on the line of centres

by the coaxal circles is rectangularly projected.

6. Prove the following construction for the centre 0 and double points A, B
of an involution on a straight line x, given by two pairs of mates (P, P'),

(Q> Q')- Describe any circles through P, P' and Q, Q' respectively intersecting

at 0, IX Then CD meets x at 0 . If OT is the tangent from 0 to either

circle, then the circle centre 0 and radius OT meets x at A, B,

7. Prove the following construction for the common mates of two collinear

hyperbolic involutions.

Let (A lf B-l) be the double points of one involution, (A 2 > B2 )
those of the

other. Let any circles passing through Av Bx
and A 2 , B2 respectively

meet at L, M. Then the points of contact of the circles through L, M touch-

ing the common base of the two involutions are the common mates required.

8. Prove the following construction for the common mates of two collinear

elliptic involutions.

Let C l9 D 1 and C 2, D 2 be the points (symmetrically situated with respect

to the common base) from which the given involutions can be rectangularly

projected. Then a circle can be described through Cv Dv C2 , D 2 and this

circle meets the common base at the required points.

9. Prove the following construction for the common mates of an elliptic

and a hyperbolic involution in the same straight line x .

Let Av Bx be the double points of the hyperbolic involution, C2,D 2 the

points from which the elliptic involution can be rectangularly projected.

Describe a circle touching x at A t (or Bt ) and passing through C2 (or D 2 ).

Let 0 be the middle point of A 1B1 : join 0C 2
meeting the circle at E. Then the

circle EC2D 2 meets x at the required points.

EXAMPLES VIIa

1. Prove that, if (P, P') are mates in an involution, and (P, P") are mates
in a cobasal involution, the forms [P'], [P"] are projective, and show that

their self-corresponding elements are the common mates of the two given

involutions.

2. If (P, Px ) are mates in an involution mv (Px , P2 ) are mates in another

(cobasal) involution m 2 and (P 2 , P3 ) are mates in a third cobasal involution tcr8,

show that [P] is projective with [P3], and that, if mv to 2 >
have a pair of

mates A, A

'

in common, then (P, P3 )
are mates in a fourth involution

Show also that the four pairs of double points of ur 2,
are pairs of

mates in a fifth involution.
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3. (A> A') and (B, B') are pairs of mates in an involution m whose double

elements are <7, D. Prove that G, D are mates (i) in the involution mv of

which (At B) and (A', B') are pairs, and (ii) in the involution mz of which

(Ay B') and (A', B) are pairs.

IfPt Q are mates in mv and Q , B are mates in wv prove that P, R are mates

in m.

4. A range [P] on a given line l is projected from two different vertices U, V
into ranges [Pi], [P2] on a second straight line V. Prove that the necessary

and sufficient condition that [PJ, [P 2] should form an involution is that UV
should be harmonically divided by l, l'.

5. State, and prove independently, the theorem obtained from Ex. 4 above

by reciprocation.

6. If (A lf A z)y (Bv B2 ), (Cv C2 )
be three pairs of points of an involution on a

straight line, show that

Mi ff ff , p A ,
^1^2

OJBf
-B1B2+ -~~‘B^Ai+7Ti?

A

1
B1
— 0.

7. Prove that any elliptic involution pencil can be projected into a

rectangular involution by a real projection.

8. Prove that if a straight line l meet two coplanar projective pencils of

vertices A, B in an involution, l and AB must be conjugate with respect to

the product of the pencils.

9. If (A, A') be a fixed pair of mates in an involution on a straight fine,

/ AP.AP' \
(P, P') any other pair of mates, prove that

( j['P
%

A'P'J
CQn8tant> an(*

the value of this constant in terms of the distances of A, A' from the centre

of the involution.

10. The sides BC, CA, AB of a triangle ABC meet a straight line at P,

Qy R. If P', Q', R' are mates of P, Q f R in an involution, prove that P'A,

Q'By R'C are concurrent.

11. If through the vertices of one triangle fines av bv cx be drawn parallel

to the sides of another triangle, and through the vertices of the latter triangle

lines a 2i b 2f c 2 be drawn parallel to the sides of the first triangle
;
prove that if’

av bv cx are concurrent, so are a2 , b 29 c2 .

12. Show that the tangents at the points of an involution on a conic form

an involution of tangents having the same axis and centre as the given

involution of points.

13. The rays p f p' are mates in an involution pencil whose double rays

are a,b ; a conic s meets p, p' at Pl9 P 2 ;
P/, Pz respectively. Show that

each of the lines P^i, PXPZ , P*Pi> P2*V meets a and 6 in points which

are conjugate for s. Hence prove that these four lines touch a fixed conic k,

which is independent of the choice of the particular pair of mates p, p'
y

and which touches a, bf and the four tangents to s at its intersections with a

and b.

14. State and prove the reciprocal of the result of Ex. 13.

15. Given two pairs of conjugate diameters of a conic in position (but not in

length), show how to construct the axes of the conic in position.

16. Show that if a simple quadrilateral exist which is inscribed in a conic s

and circumscribed to a conic s', there exist an infinite number of such simple

quadrilaterals and they have the same intersection of diagonals.

[Use the result of Ex. 13.]
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17. Oy U are conjugate points with regard to a conic. Through 0 a ray
OPQ is drawn meeting the conic at P, Q. Prove that UP, UQ are mates in

an involution.

18. If a chord QQ' of a parabola meet a diameter PV at 0, and if QV,
Q'V' be ordinates to this diameter, prove that PV.PV'—PO*.

19. If from a point T outside a parabola a tangent TP and a chord TQQ'
be drawn, and if the diameter through P meet QQ' at K, show that TQ.TQ
TK\

20. Two coplanar elliptic involution pencils have different vertices A, B.

Show that through any point P of their plane two conics can be drawn
passing through A and B, on either of which the two involution pencils

determine the same involution.

By taking P on AB prove that there are two real straight lines, on each

of which the given pencils determine the same involution. [Use Art. 108.]

21. A, B are the vertices of two coplanar involution pencils with real

double rays (av a 2 ) ;
(b l9 b 2 )

respectively. If a 16 1= (7, a 2b 2—D, a^b 2—E,
a 2b 1= Fy prove that the two pencils determine the same involution on any
conic through A f B, C, D ; or through A, By E, F.

22. Two involution ranges on the same conic have a double point A in

common. If V is the point where the tangent at A meets the join of their

other double points, (P, P') any pair of mates in one involution, (Q, Q') the

points where FP, VP' respectively meet the conic again, prove that Q, Q'

are mates in the other involution.

Discuss the particular case of this theorem when the conic is a line-pair,

the involutions lying on different lines of the pair.

23. A pair of mates in a rectangular involution of vertex O meets a fixed

line l at P, Q, and P', Q' are mates of P, Q respectively in a given involution

upon l. Through P', Q' parallels are drawn to OQ, OP respectively, meeting
at R. Show that the locus of R is a straight line.

24. If F is the Fregier point of P, and C the centre of the conic, prove that

CP, CF are equally inclined to the axes.

25. If the tangent at P to a hyperbola whose centre is C meet the asymp-
totes at Q and R, prove that the Fregier point of P is the intersection of the

tangents at Q and R to the circle through C, Q and R. [Use Ex. 24.]

26. If AB, CD are two perpendicular chords through the Fregier point F
of P, and the circles PAB, PCD meet the conic again at R and S respectively,

prove that RS passes through F.

EXAMPLES VIIb

1. A, By C are three points in order on a straight line, where AB— 3",

BC=2". Construct the point D which is the harmonic conjugate of C with
respect to A and B, and the points X, Y which are the common harmonic
conjugates of the pairs (A, D) (B, C ).

Find also the points which are the common harmonic conjugates of the

pairs (A, C), (B, D).

Are there any common harmonic conjugates of the pairs (A, B), (C, D) ?

2. 0, P, Q are points on a straight line ; OP =2-5", OQ—4". P, Q are

mates in an involution on the line, of which O is a double point. Construct
the other double point, and the mate of the point R,

where OR— 6".

11
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3. Two circles have radii 1*5" and 1" respectively, and their centres are
3*5" apart. Construct graphically : (1) their radical axis ; (2) the limiting

points of the system of coaxal circles defined by the given circles ; (3) the

circle of this system passing through the point on the radius of the circle of

radius 1" perpendicular to the line of centres, and at a distance of 2*5" from
the centre of the last-named circle.

4. (OP, OP'), (OQ, GQ') are mates in an involution pencil. The angles

POQ, QOQ', Q'OP' (measured in the standard sense) are 45°, 30°, 60° respec-

tively. Construct the double rays of the involution.

5. Draw two circles of radii 2 inches and 1 inch respectively, with their

centres 4 inches apart, and mark a point A distant 4 inches from both centres.

Draw the circle which passes through A and cuts the first two circles ortho-

gonally.

6. The centre of a conic is at the origin, and the conic passes through the

points (1, 0) (0, 2) and (-1, 2). Construct its axes in position, without
drawing the curve.

7. P, Q , Q', P' are four points in order on a straight line. PQ—3 cm.,

QQ'—2 cm., Q'P'— 5 cm. Construct the common mates of the involutions

defined by the pairs (P, P') (Q, Q') and (P, Q') (Q, P') respectively.

8. Two conjugate semi-diameters of an ellipse are of lengths 2" and 3"

respectively, and make an angle of 60° with one another. A hyperbola has
these diameters for asymptotes. Construct the common conjugate diameters

of the ellipse and hyperbola in position.



CHAPTER VIII

FOCI AND FOCAL PROPERTIES OF THE CONIC

115. Foci of a conic. A focus of a conic s is defined to be a
point such that conjugate lines through it are perpendicular.

There can be no focus which does not lie on an axis of the conic.

For, let S be a focus, and x the diameter through S . Then, by the
property of the focus, the line through S conjugate to x is perpendi-

cular to x
,
so that the direction conjugate to the diameter x is at

right angles to x
;
therefore x is an axis.

Let now Z700
, F00 (Fig. 44) be two rectangular points at infinity

which are not conjugate points for s. This requires (i) that s is

not a circle
;

(ii) that neither Z700 nor F00 lies on an axis.

Consider the pencils of lines u, u' conjugate for s
, through £7°°,

F00
. Then, by Art. 52,

Thus the product of
|>], \u'] is a conic k passing through Z700

, F00
.

Now every focus S must lie on k. For, if we join ££7°°, $F°°
these, being perpendicular lines through a focus, are conjugate for s

,

and their intersection is therefore a point of k. Further, every
intersection of k with an axis x is a focus. For the involution of

conjugate lines through S has then two pairs of rectangular mates,
namely x and the perpendicular to x through S

y
and the pair /SC/00

,

$F°°. All the possible foci are therefore given by the intersections

of k with the axes.

If the original conic s is a central conic, the line at infinity does
not touch s, so that f/^F00

is not self-conjugate and the pencils

O], [u
f

] are not perspective
;

k is then a non-degenerate conic,

which is clearly a rectangular hyperbola, since it passes through U00
,

F00
. Further the tangents to this hyperbola at £7°°, F00 are the

lines through these points conjugate to C/^F00
,
that is CU00

,
OF00

,

where C is the centre of s. C is accordingly the meet of the
asymptotes of k

,
and therefore the centre of k, as well* as of s. If

now x, y are the axes of s, they are perpendicular diameters of k .

Hence, by Art. 83, one only, say x
, meets k at two real points S, H.

145
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These are the only real foci of s and are necessarily symmetrical

with respect to C.

The axis on which the foci lie is called the focal axis, the other

being the non-focal axis.

Since the involution of conjugate lines through a focus, being

rectangular, has no real double lines, no real tangents can be drawn

from a focus to the conic, and foci are always points internal to the

conic. Thus the line joining them meets the conic at real points

A, A\ the centre C being the common mid-point of AA\ SH .

In the ellipse, the line at infinity does not meet the curve in real

points, so that its pole C is a point internal to the conic. The

segment AA' is therefore internal to the conic and S, H lie between

the vertices A ,
A'. That the focal axis is in this case the major

axis will be proved later (Art. 119).

In the hyperbola, the line at infinity meets the curve in real

points, and C is external to the conic. The segment AA' is therefore

external to the conic, and S, H lie outside the vertices, A , A'. The

focal axis is here necessarily the transverse axis, since the conjugate

axis does not meet the curve in real points.
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If the conic s is a parabola, f/^F00 touches 8 and is self-conjugate ;

it is therefore a self-corresponding ray of the pencils [w], [u'], which

are accordingly perspective
;
k therefore breaks up into the line at

infinity and another straight line l.

But the point of contact L of the accessible tangent from f7°°

to s, being the pole of this tangent, lies on the conjugate line through

F00 and so is a point of k. Similarly the point of contact M of the

accessible tangent from F00 to s is a point of k. These two points,

being accessible, must lie on the component l of k. Also £, M
cannot lie on the axis, since the tangents at L, M are oblique

to the axis. Hence l cannot be identical with x , and must meet it

at some point S. Moreover, S must be an accessible point. For if

S were at infinity, it must be the point A00 at infinity on x
;
but X00

is the point of contact of one tangent from U°° or F00
,
namely

the line at infinity. Also LX00 is the polar of Z7°°, and MX00

is the polar of F00
,
with respect to 8. If therefore L ,

M, X00 all

lie on Z, l must be the polar of both £/°° and F00 with respect to s
,

or two different points would have the same polar with respect to a

non-degenerate conic, which is impossible.

Thus here again the locus k meets the axis of the parabola at

two real points, one S at a finite distance, which is usually referred

to as the focus of the curve, and one /700 at infinity.

If the conic s is a circle, every pair of rectangular points 17°°, F00

are conjugate, and the above argument does not apply. In this

case all conjugate diameters are perpendicular, so that the centre

C is a focus. Also no other point P can be a focus. For if we

draw any line q through P, its pole Q lies on the perpendicular n

through C to q. PQ is the line through P conjugate to q, and this

cannot be perpendicular to q unless Q is at infinity on n
9
that is,

q passes through C. Thus the only rectangular conjugate lines

through P are the diameter through P and its perpendicular.

Examples

1. Prove that the absolute length of the semi-diameter of k along the axis y
is CS, and that, if the conic 8 is a central conic, the conic k and its conjugate

hyperbola k' together pass through the comers of a fixed square.

2. In the case where the given conic is a parabola, show that the line

joining the points of contact of two perpendicular tangents passes through

the focus.

116. Involution of orthogonal points on an axis. Let a pair

of conjugate lines u
9 u

f

through Z700 , F00 (Fig. 44) meet an axis x

at P, P'. The points P, P' are in general distinct, unless they
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happen to coincide with a focus. We shall further suppose that

neither of them is at infinity.

The points P, P' cannot be conjugate for s. For, if they were,

the polar of P would be the line through P' perpendicular to x.

This is conjugate to every line through P, in particular to u
;

but,

being perpendicular to an axis, it cannot pass through F00
,
so that

u f

cannot pass through the point conjugate to P on x.

On PP' as diameter describe a circle c (Fig. 44). This must pass

through the intersection K of u , u\ since these are perpendicular

lines through P, P' respectively.

Consider now the pencils of conjugate lines r, r' through

P, P' respectively
;

then [r] 7\ [/] by Art. 52. Hence the meet
R of r, r' describes a conic t passing through P, P'.

When r coincides with u, r' coincides with u', and R with K .

Thus the conic t passes through K.

When r is along x
,
r' passes through the pole of x

, that is, through

the point at infinity on y. The tangent at P' to t is therefore

parallel to y. Similarly the tangent at P to t is parallel to y.

Thus the circle c and the conic t have in common three points

P, K, P' and the tangents at P, P'. Hence they coincide altogether.

Accordingly all points R lie on the circle, and all conjugate lines

r, r' are perpendicular.

The points P, P' have therefore the property that conjugate

lines through P, P' are perpendicular.

The points Q, Q' at which u
,
ur

meet y can be shown in like

manner to have the same property.

Pairs of points which have this property will be referred to as

orthogonal points with respect to the conic.

If we now take P at infinity, and remember that V^C is the ray

conjugate to the line at infinity through I700, it will follow that P'

is at C. In this case every line through P' is conjugate to the line

at infinity through P00
,
but since the line at infinity may be regarded

as perpendicular to every direction, it may be regarded as per-

pendicular to all the lines through P', which are conjugate to itself.

On the other hand, accessible lines through P00 are parallel to x
and so are conjugate to the other axis y through P', and perpendicular

to it.

Thus C and the point at infinity on x still possess the essential

property of orthogonal points. It should be noticed that this pair

form an exception to the rule, that orthogonal points are not

conjugate for s .
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Since the ranges [P], [P'] are the intersections of x with the

projective pencils [«], |V], theyform projective ranges. But, further,

if we join P'ZJ00
,
PF00 these lines are perpendicular and, therefore,

by the property of orthogonal points, conjugate. Hence if we
take u along 0rooP/

,
u' is along F°°P, so that if P is at P', then P'

is at P. The pair P, P' therefore correspond doubly and the

orthogonal points on an axis form an involution, of which the centre

C of the conic is the centre.

In the above, x may be either axis. But the double points of

these involutions must be an intersection with x of the conic h

of Art. 115. The double points on the focal axis are therefore the

foci S, H, and the involution on this axis is hyperbolic, and we have

CP.CP'=CS* =CW.
On the non-focal axis there are no real intersections with &, and

therefore no real double points of the involution of orthogonal points

on that axis, which involution is therefore elliptic.

In the case of the parabola, where there is only one accessible

axis, one double point H is at infinity and the other S is at a finite

distance. Since these divide PP' harmonically, orthogonal points

P, P' are symmetrically situated with respect to the focus.

117. The bisectors of the angles between the focal distances.

Let P (Fig. 45) be any point, not a focus, PG
,
PT the rectangular

mates of the involution of conjugate lines through P meeting an
axis at G, T . Then G, T are orthogonal points for the conic.

Hence

CG.CT = constant,

for either axis.
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If the axis in question be the focal axis, we have further

CG.CT =CS2 =CH2
.

Moreover, G, T are harmonic with respect to the foci S, H ;
hence

PG, PT are harmonic with respect to PS, PH
,
and being per-

pendicular, are the bisectors of the angle SPH.
If now PL, PM are the tangents from P to the conic, PG, PT,

being conjugate lines, are also harmonic with respect to PL, PM
(Art. 49) and are therefore also the bisectors of the angle between

PL, PM.
Hence two rectangular conjugate lines through P are the

common bisectors of the angles between (i) the focal distances,

(ii) the two tangents from P to the conic.

If P is on the conic at Pl9 the tangent at P
Y
and the line through

P
x
perpendicular to the tangent, which is known as the normal

at Pl5 are clearly conjugate lines through Px
and also perpendicular.

Thus : (i) if the normal and tangent meet the focal axis at

G, T, then CG.CT = CS2
,
and (ii) the tangent and normal at

any point on the conic bisect the angles between the focal

distances.

If PjT is here the tangent, then, since a real tangent to a conic

necessarily lies outside the curve, T lies outside AA' (and therefore

outside SH) in the case of the ellipse, and inside AA' (and therefore

inside SH) in the case of the hyperbola.

The internal bisector of the angle SPiH is therefore the normal

when the conic is an ellipse, and the tangent when it is a hyperbola.

In the parabola, H is at infinity on the axis. Hence the tangent

and normal bisect the angles between the axis and the focal distance
;

and for a point P not on the parabola the two tangents from P,

and the diameter and focal distance, have the two rectangular con-

jugates through P as common bisectors. Also, since H is at infinity,

S becomes the middle point of GT.

Examples

1. If the tangent and normal at P meet the non-focal axis at T' and G',

prove that S, H, P, T', G' are concyclic and CG'.CT'— - CS2
.

2. Show that two parabolas which have a common focus and their axes

in opposite directions intersect at right angles.

3. PQ is a focal chord of a parabola, and the normal at P meets the curve

again at JR

;

if QR meets a line through P parallel to the axis at V, and U
is the midpoint of PV, prove that UQ is the tangent at Q.

4. Prove that through any point P of the plane, two conics can be drawn
having given foci, and that, of these two, one is an ellipse, and the other

a hyperbola, and they meet at right angles at all their intersections.
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5. Show that two parabolas with a given focus and axis pass through a
given point P, and that they intersect at right angles.

6. Show that the two tangents from P to any conic are equally inclined to
the tangent and normal at P to a confocal conic through P.

7. Having given three tangents to a conic and a focus determine the other
focus and the points of contact of the tangents.

118, The eccentricity. The polar of a focus is called a

directrix. Since a focus lies on an axis, its directrix is per-

pendicular to that axis. Also, from the symmetry of the curve

with regard to the centre, and since the foci are symmetrical points,

the directrices are symmetrically situated with regard to the centre.

Let 8 (Fig. 46) be a focus of a conic s, XM the corresponding

directrix, X being the foot of the perpendicular from S on this

directrix. Construct the figure in plane perspective with s
,
when

S is taken as pole of perspective, and the directrix as the vanishing

line i for the conic, the axis of perspective YZ being any arbitrary

line x parallel to the directrix.

The figure corresponding to s will be another conic s', in which

the point corresponding to S and the line corresponding to i are

pole and polar. But S is self-corresponding and i corresponds

to the line at infinity i,cc . Hence S is the centre of s'.
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Further conjugate lines through S, which are at right angles

since S is a focus, transform into conjugate diameters of s'. But

lines through S transform into themselves by the property of the

pole of perspective. Hence all conjugate diameters of s' are

perpendicular, that is, every diameter of s' is an axis. Thus s'

is a circle (Art. 60).

Let P be any point on s . Join XP, meeting the axis of perspective

at Z. Then A' 00 is at infinity on SX, and ZX,co corresponds to

ZX
,
that is, it is the parallel through Z to SX. Since P lies on ZX

,

P' lies on ZX,co
;
but P' also lies on SP

,
and so is determined by the

intersection of SP and the parallel through Z to SX.

Let PM be drawn perpendicular to the directrix, and let P'Z

meet the directrix at N.

Since PM, ZN are parallel

PM.ZN~PX.ZX.

Since P'Z
,
SX are parallel

PX:ZX~SP:SP'.

Hence PM : ZN ~SP : SP'

or SP : PM =SP'
: ZN =SP '

: YX,

Y being the intersection of x and SX.

Since P' describes a circle with S as centre, SP' is constant.

Also YX is the perpendicular distance between the axis of per-

spective and >the vanishing line i, and is constant as P varies.

Thus SP' : YX =a constant ratio, which we will denote by e.

Accordingly SP =e.PM, or :

The distance of a point on a conic from a focus is in a constant

ratio to its distance from the corresponding directrix.

This ratio is called the eccentricity, and the symmetry of the

two foci and directrices shows that it is the same for either focus,

in the case of a central conic.

Let now the vanishing line/ of the circle meet SX at J' (Fig. 46).

Then, since by Art. 12 the distance of one vanishing line from the

axis of perspective is equal to the distance of the pole of perspective

from the other vanishing line,

YX-J'S

and e=SP' : J'S.

If j

'

meets the circle in real points, the conic s is a hyperbola

(Art. 34). This requires SP'>J'S, so that e>l.
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If f does not meet the circle in real points, the conic $ is an
ellipse. We then have SP'< J'S, so that e<l.

Iff touches the circle, the conic s is a parabola, and SP' -J'S, so

that e = 1

.

The property that SP -e.PM will be referred to as the focus and
directrix property.

Examples

1. Two points of a conic being given and also one of the directrices, show
that the locus of the corresponding focus is a circle.

2. T is any point on the tangent at P to a conic of which S is one
focus, and TB, TU are the perpendiculars drawn from T to SP and to
the directrix corresponding to S. Prove that SR : TU is equal to the
eccentricity of the conic.

119. Relations between fundamental points and lengths.

Let Fig. 47 represent the principal points and lines connected with

the conic. C is the centre, S, H the foci, x and x' the directrices,

meeting the focal axis at X, X'
;
A, A' are the vertices on the focal

axis, B
,
B' those on the non-focal axis

;
the latter are shown only in

Fig. 47 (a), as they are not real except in the case of the ellipse.

The chord LL' through a focus S at right angles to the focal axis

is called the latus rectum.

From the focus and directrix property :

SA=e.AX (1)

A'S=e.A'X (2)
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where the formulae hold good for either type of central conic, if

signs of segments are taken into account.

From (1) and (2), by addition,

A'A=2e.CX,

since C is the middle point of A'A.

Hence CA=e.CX (3)

By subtraction of (1) from (2)

2.CS=e.A'A,

or CS =e.CA (4)

giving the position of the foci.

Note that, in the ellipse, the foci are inside (cf. Art. 115), and the

directrices outside, A'A. These relations are reversed in the hyper-

bola.

Since the directrices, being polars of internal points, do not

meet the conic in real points, it follows that, in the ellipse, the

whole curve lies between the directrices
;

in the hyperbola, the two

branches are separated by the directrices
;

in the parabola, the

whole curve lies to one side of the directrix.

Again \SL\=e\SX\~\e.SX\

=
|

e(CX -CS)\ = \CA- e2CA \=CA\l-e2
\

(5)

so that \SL
\

=CA( 1 -e2
)
in the ellipse, and CA(e2 -

1) in the hyper-

bola, CA being taken as positive.

Further, by Art. 7

6

SL2 CB2

A'KSA
=
CA2

But SA=CA-CS = CA(l-e)

A'S=A'C + CS = CA(l+e)

Therefore CB2 = =
CA ~ (l =CA2

(
1-e2

) (6)
1-e2 1-e2

Note that A’S.SA-CB2
(7)

It follows that, in the ellipse, CB is real and less than CA . Thus

the focal axis is the major axis of the ellipse. In the hyperbola CB2

is negative as is to be expected (Art. 76). Denoting by CB± its

absolute length

and

OB2 = -CB
X
2

CBi2 =CA2(e2 -1)
(
8

)
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Note that, in either case, the square of the absolute length of

the non-focal axis is

CA.SL (9)

In the parabola, only S, A, X, L
,
U survive as accessible points,

and we have

SL-SX-2.SA (10)

The latus rectum LL' — 4.SA
;

this is often called the parameter

of the parabola.

Examples

1. Prove that a line-pair may be looked upon as the limiting case of a

hyperbola when the foci coincide with the centre.

2. Prove that a point-pair may be looked upon as the limiting case of a

very flat ellipse or hyperbola, the foci being coincident with the vertices.

Show that the eccentricity of a point-pair is unity.

120. The sum and difference of the focal distances. In

Fig. 47 let P be any point on the curve, and let the parallel to the

focal axis through P meet the directrices at M, M'.

In the ellipse :

SP =e.PM,

HP = e.M'P.

By addition

SP +HP -e.M'M = c.X'X = 2e.L
iX = 2.CA,

or, the sum of the focal distances is equal to the major axis.

In the hyperbola, H being the focus inside the branch remote

from P,

HP-e.M'P,

SP=e.MP.
By subtraction

HP - SP = e.M'M = 2.CA

or, the difference of the focal distances is equal to the transverse

axis.

Examples

1. The firing of a gun at P is heard at stations A and B at times separated

by an interval during which sound would travel a distance l (less than AB)

.

Show how to construct the locus of P.

2. Find the locus of the focus of a parabola passing through two fixed

points A, B and the direction of whose axis is given.

121. Tangents from an external point subtend equal or

supplementary angles at a focus. Let TP, TQ (Fig. 48) be
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tangents from T to a conic, P
, Q their points of contact, S a focus.

Join ST meeting PQ at Z, and let QP meet the directrix corre-

sponding to S at Y. The pole of ST is the meet of the polar of T
(that is, PQ) and the polar of S (that is, the directrix). Hence Y
is the pole of ST, and Y, Z are harmonically conjugate with regard

to P, Q, so that SY, SZ are harmonically conjugate with regard to

SP,SQ.
Also SY, ST are conjugate lines through a focus and therefore

perpendicular. Hence (Art. 28) they are the bisectors of the angle

PSQ .

The point Y lies outside PQ unless the conic is a hyperbola and

P, Q are on different branches (see Fig. 47). Thus ST is the

internal bisector of the angle PSQ in every case except when P and

Q are on different branches of a hyperbola.

Therefore tangents from an external point to a conic subtend

equal angles at a focus unless they are tangents to different branches

of a hyperbola, when they subtend supplementary angles at a

focus.

An important particular case arises when P and Q coincide

;

T then coincides with them and we obtain the following theorem :

The intercept on a tangent between the point of contact and

a directrix subtends a right angle at the corresponding focus.
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Examples

1. Prove that tangents to a conic subtend equal or supplementary angles

at a focus by considering a plane perspective which transforms the conic

into a circle having that focus for centre.

2. Two conics with four real intersections have a common focus. Prove
that two of their common chords pass through the intersection of the

directrices corresponding to the common focus.

3. Prove the following construction for the pole of any line q with regard
to a conic, given the two foci S, S' and the two directrices s, s'. Let q meet
8 at P, s' at P'. Through S, S' draw perpendiculars to SP, S'P' respectively :

these meet at the point Q required.

4. Given a directrix and the corresponding focus of a conic and the

direction of one tangent through a given external point 0, show how to draw
the remaining tangent from 0.

122. The rays joining a focus to the intersections of a variable

tangent with two fixed tangents describe directly equal pencils.

We may state the first

theorem of Art. 121 as

follows. If TP, TQ are two

tangents to a conic, of

which S is a focus, twice

the rotation (measured posi-

tively in a prescribed sense)

which brings the line SP
into coincidence with the

line ST (or ST into coinci-

dence with SQ) will bring

the line SP into coincidence with the line SQ. In this form

the theorem applies to both cases, whether the angles sub-

tended by TP, TQ at S are equal, or supplementary. We must,

however, remember that the coincidences are here irrespective of

the sense of segments measured positively on the lines, so that

every rotation has an indeterminacy of an integral multiple of two

right angles. It follows that we cannot divide by two and say that

half the rotation which brings SP to SQ brings SP to ST.

Let now A, B (Fig. 49) be two fixed points on the conic, P a

variable point, and let the tangent at P meet the tangents at A
and B at L and M respectively.

Then, by what has just been stated

2(rotation SL to SP) = rotation SA to SP,

2(rotation SP to SM) = rotation SP to SB.

Adding

2(rotation SL to SM) = rotation SA to SB,
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and this must be true for any interpretation of the rotation SL to

SM, and some interpretation of the rotation SA to SB.

There must clearly be a finite range of positions of LM over which

these interpretations remain the same, for they cannot change

abruptly unless one of the points L, M, P passes through infinity.

Throughout this range of positions we have

rotation SL to SM = a constant a, say.

Consider now two pencils /S[jL], S[M] of which the second is

obtained from the first by this rotation a. The pencils are equal

and therefore projective, hence [L]~k[M] and LM touches a conic s ,

the tangents to which must coincide with those of the given conic

over the above-mentioned range of variation. Thus s and the

given conic have an infinite number of common tangents and must

coincide. Accordingly the same two pencils give the whole of the

tangents to the given conic, and we have, for all positions of P,

L
,
M

rotation SL to SM =the same constant a,

which proves the theorem required.

The student will find it instructive to trace the relation of the

rotation SL to SM to the angle ASB

,

(i) when the conic is an

ellipse lying inside the triangle formed by the tangents, (ii) when

the conic is external to the triangle and touches all three sides

along the same branch, (iii) when A and B lie on different branches

of a hyperbola, (iv) when A, B lie on one branch of a hyperbola and

P on the other branch.

Example

Prove the converse of the theorem of the present Article, namely that, if

SL, SM are corresponding rays of two directly equal concentric pencils

through a fixed point S, meeting two fixed straight lines at L, M, then LM
envelops a conic of which 8 is a focus.

123. Focal chords. Let PSQ (Fig. 50) be a focal chord through

a focus S,
meeting the corresponding directrix at Y. Since S is

the pole of the directrix, {FQSP} = - 1, and, by Art. 28

1 1 _ 2

YP + YQ
=
YS

'

Let PM, QK, SX be the perpendiculars from P, Q, S on the

directrix. By similar triangles

YP.YQ: YS =PM :QK:SX
=e.PM : eQK : e.SX

=SP : QS : SL
by Arts. 118, 119, LSL' being the latus rectum.
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Hence _
1

_

SP
+
QS

2_
SL

a harmonic mean

(1)

between theor, the semi-latus rectum is

segments of any focal chord.

The above will be found to hold good in all cases, even when S is

outside PQ, provided the positive sense on the focal chord is taken

from the focus towards the nearer intersection P with the curve.

Another proposition on focal chords is easily deduced. Newton’s

Theorem gives at once

QS.SP CD2

L'S.SL CB2 ( '

where CD is the semi-diameter parallel to PQ.

Now, from (1), multiplying up, and remembering that QS +SP =

QP
2.SL2.CD2

QP.SL = 2.QS.SP
CB*

i.e.

or

QP =

\PQ\ =

2.SL.CD2

CB2

2.\SL\\CD\ 2

\CB\ 2 ‘

12
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hence

\CB\2 = \SL\.\CA\, by Art. 119 (9)

;

2|CD|2
\PQ\-

\CA\

or, the lengths of focal chords are proportional to the squares
of the absolute lengths of the parallel semi-diameters.

124. Intersection of the normal with the focal axis. Let
the normal and tangent at P (Fig. 50) meet the focal axis at 6?, T,

and let PN be the ordinate through P.

We have seen (Art. 117) that

CG.CT =CS2 = e2.CA2
.

But also, PN is the polar of T, since, T being on an axis, its polar

is perpendicular to that axis. Thus {A'NAT} = - 1, and

By division

But

CN.CT =CA2
.

CG=e2.CN (1)

CN =CX - PM,
CG=CS -GS,

there being here no need to discriminate between the cases of the

ellipse and hyperbola, if attention is paid to sign.

Substituting into (1)

CS - GS =e2.CX - e2.PM
But

v
e2.CX=e.CA =CS (Art. 119).

Thus GS=e2.PM (2)

or, using Art. 118 |&(7| =e.|#P| (3)

The distance GN is called the subnormal. This also can be

expressed in terms of SP
,
or PM. For

GN =CN - CG=CX-PM -CS + GS
=SX-(l~e2)PM (4)

These results are often useful.

Examples

1. Prove that the orthogonal projection of the normal PG upon either
focal distance is constant and equal to the semi-latus rectum.

[If K= foot of perpendicular from G on SP in Fig. 50, and if the tangent at
P meet the directrix corresponding to S at U, prove triangles PKG, USP
similar and triangles SKG, UXS similar

;
and use SG=e.SP.]

2. Normals at the extremities of a focal chord PP' meet parallels to the
focal axis through P and P' at Q' and Q respectively : show that PP'QQ'
is a parallelogram.
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125. The feet of focal perpendiculars on a tangent lie on
the auxiliary circle. Let SY, HZ (Fig. 51) be perpendiculars

from S, H upon the tangent at P. Let HP meet SY at F.

Consider the case where the conic is an ellipse.

The angle FPY =SPY, since PT bisects SPH externally by

Art. 117. Hence, the angles FYP
,
SYP being right angles and

YP being common, the triangles FYP, SYP are congruent. .’.
|
FP\

~\SP\ and \FH\ = \SP\ + \HP\=2\CA\. Also C, Y being mid-

points of SH, SF respectively, \CY\ =||PZ?| = \CA\, Hence Y
lies on the auxiliary circle. Similarly Z lies on the auxiliary circle.

The proof when the conic is a hyperbola is precisely similar and may
be left as an exercise for the student.

Fig. 51 .

If Y', Z' be the feet of perpendiculars upon the tangent parallel

to the tangent at P, Y' and Z' also lie on the auxiliary circle.

Also by symmetry

\SY'\ = \HZ
\ ;

\HZ'\ = \SY\.

Hence SY.HZ= Y'S.SY =A'S.SA by the property of segments

of chords of a circle.

But A'S.SA^CB2 (Art. 119 (7)), so that

SYJIZ=CB2

or, the product of focal perpendiculars upon a tangent is equal

to the square of the non-focal semi-axis.
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If the conic be an ellipse 8 F, HZ are drawn in the same sense and

CB2 is positive.

If the conic be a hyperbola SY, HZ are drawn in opposite senses

and CB2 is negative and equal to -CBY
2 (Art. 119).

Hence SY.ZH-CB^.

Examples

1. Given both foci and a tangent to a conic, show that the conic is uniquely

determined, and find the point of contact of the given tangent.

2. A focus and three tangents to a conic are given. Construct the axes of

the conic in position and length.

3. If CD be the absolute length of the semi-diameter conjugate to CP,

show that
SP.HP=CD 2

.

4. Show that points of contact of tangents from the foci to the auxiliary

circle lie on the asymptotes.

5. The focus of a conic slides on a fixed line, the conic itself sliding on a

fixed perpendicular line. Find the locus of the centre.

6. A variable line moves so that the product of the perpendiculars upon it

from two fixed points is constant. Show that it envelops a conic, of which

the two fixed points are foci.

126. The normal PG is inversely proportional to the per-

pendicular CK from the centre on the tangent at P. For since

T, G (Fig. 51) are harmonically conjugate with respect to S, H
(Art. 117),

1 J. _ 2

TS
+ TH ~ TG‘

But TS : TH : TG=SY : HZ : GP,

J. 1 _ 2^
” SY + HZ

=
GP

’

SY+HZ 2

SYMZ ~GP‘

But SY +HZ =2CK because C is the middle point of SH

;

also SY.HZ =CB2 by Art. 125,

2CK 2
'• cm ~ GP'

or CK.GP =CB2
.

127. Special properties of the parabola. Many special

properties of the parabola are deduced at once from those of the

ellipse and the hyperbola by removing one vertex A' and the
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corresponding focus H to infinity. The line HP then becomes a
parallel to the axis. Also e is put equal to unity when it enters

into any formula, but (1 -e2)SA' or 2(1 -e2)CA is to be put equal

to the latus rectum.

It should be noted that, although the results may be thus obtained

as limiting cases, the proofs given for the central conics cannot
always be similarly obtained and may require modification for the

case of the parabola.

The following are two examples of properties of the parabola

deduced as limiting cases of corresponding properties of the central

conics.

If, in the last theorem

of Art. 124, we write 6 = 1,

we have at once GN =SX
,

or the subnormal in the

parabola is constant, and

equal to the semi-latus

rectum.

The auxiliary circle de-

generates into the straight

line throughA perpendicular

to the axis, that is, into the

tangent at the vertex. The

first theorem of Art. 125

now reads :

The foot of the perpen-

dicular from the focus

upon any tangent to a

parabola lies on the tan-

gent at the vertex.

Separate proofs of certain other properties of the parabola will

now be given.

128. The intersection of perpendicular tangents to a parabola

lies on the directrix. Let PSQ (Fig. 52) be a focal chord of a

parabola. Let the diameter conjugate to PQ meet the directrix

at Y. Then, since the pole of PQ lies on both this diameter and
the directrix, it is the point Y. Hence YP, YQ are the tangents

at P and Q . Let PL, QM be the perpendiculars from P and Q
on the directrix.

By Art. 117 PY bisects LPS and QY bisects MPS. Thus
YPQ-\- YQP = %(LPS +MQS) =a right angle, since PL and QM



164 PROJECTIVE GEOMETRY

are parallel. The remaining angle PYQ of the triangle PQY must

therefore be a right angle, which proves the theorem stated.

129. Parameter of parallel chords of a parabola. We have

seen (Art. 76) that if QP (Fig. 52) be a chord of a parabola bisected

at N by its conjugate diameter and if this diameter meet the curve

at D, then

QN2

=the parameter of the chords parallel to PQ.

To find its value take the chord QP to pass through the focus S.

From Fig. 52, since the angle at Y is a right angle, the circle on

PQ as diameter passes through Y, its centre being N, the middle

point of PQ. Thus QN = YN.
Also, since YDN is parallel to the axis, it meets the curve again

at E°°, and, since PQ is the polar of Y, D is harmonically conjugate

to E00 with regard to Y and N. Hence DN = YD =\YN.

Accordingly = ~yy = 4. YD

=

LSD,

by the focus and directrix property.

The parameter is therefore 4.SD, where D is the extremity of

the diameter conjugate to the chords.

130. The circle circumscribing the triangle formed by three

tangents to a parabola passes through the focus. If, in the

theorem of Art. 122, we take for one of the positions of the variable

tangent the line at infinity, which is possible in the case of the

parabola, the points L, M become the points at infinity on the other

two tangents a and b at A and B respectively. The lines SL
,
BM

are then parallel to a and b
,
and it follows that, when c varies, the

value of the constant angle LSM is one of the angles between a and 6.

If now a, b
,
c are any three tangents, forming a triangle LMN

;

where N is the intersection of a and b, we have LSM is equal or

supplementary to LNM, or the points L, M, N, S are concyclic,

and the circle LMN
,
which circumscribes the triangle formed by

the three tangents, passes through the focus S.

Examples

1. TP, TQ are two tangents to a parabola. Show that the circle touching

TQ at T and passing through P passes through the focus.

2. Given two tangents to a parabola and their chord of contact, construct

the focus and the directrix.

3. PQR being a triangle circumscribed to a parabola, prove that the

perpendiculars from P, Q, B to SP, SQ, SB are concurrent.
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4. Parabolas are drawn touching the sides of a.given triangle ; show that

the pairs of parabolas, which have their axes perpendicular, have their foci

at opposite ends of a diameter of the circumcircle of the triangle.

5. A parabola is given by four tangents. Without finding any point on

the curve construct its focus.

6. Show that the four circles circumscribing three of the sides of a complete

quadrilateral have one common point.

131. The orthocentre of the triangle formed by three tangents

to a parabola lies on the directrix. This is readily proved from

Brianchon’s Theorem.

Let a, b, c be the three tangents, V ,
c' the two tangents per-

pendicular to b, c

,

and i
00 the line at infinity.

Consider the hexagon abb'i^c'c. Then
(
ab

,
i°°c') (bb', cc') (6'i

00
,

ca) are concurrent.

But (ab, i^c') is the parallel to c' through ab, i.e. the perpendicular

from ab on c.

Similarly (ac, i°°&') is the perpendicular from ac on b.

Hence the Brianchon point is the orthocentre of the triangle.

But (bb\ cc') is the directrix, since perpendicular tangents b and

b', c and c
f meet on the directrix.

The orthocentre therefore lies on the directrix.

Example

TP, TQ are two tangents to a parabola
;

perpendiculars to TP, TQ are

drawn through T and P respectively. Show that they intersect on the

directrix.

132. Focal chord of curvature of a parabola. The investi-

gation of the circle of curvature (Art. 84) shows that, if the diameter

through P meet the circle of curvature at V, then PV is equal

to the parameter of the chords conjugate to this diameter.

If the focal radius PS meet the circle of curvature again at TJ,

PV is termed the focal chord of curvature at P. By Art. 117,

PV, PV are equally inclined to the normal to the parabola at P,

that is to the diameter of the circle through P. Hence, by the

symmetry of the circle, PV —PV = parameter of chords parallel to

the tangent at P.

But this parameter has been shown (Art. 129) to be i.SP . Thus

PV =4.PS and the point V is readily constructed when the focus

is known. This gives a point V on the circle of curvature. A
perpendicular through V to PV meets the normal at the other

extremity of the diameter of the circle through P, and the circle is

determined.
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Examples

1. If the normal at P to a parabola meet the directrix at H, then the
radius of curvature at P—2HP.

2. In the plane perspective relation between the parabola and its circle of
curvature at P, in which the tangent at P is the axis of perspective, prove that,
if C is the centre of the circle and 0 the pole of perspective, then if OC meet
the vanishing line of the circle at K, PK is the diameter of the parabola
conjugate to chords parallel to the tangent at P.

3. Using Ex. 2 prove directly that the focal (or diametral) chord of curvature
is equal to the parameter of the chords parallel to the tangent at P, without
using Art. 84.

EXAMPLES VIIIa

1. Show that the asymptotes of a hyperbola meet the directrices at points
on the auxiliary circle.

2. On the transverse axis AB of a hyperbola as diameter a circle is drawn
(the auxiliary circle of the hyperbola). A ray through A meetB the circle and
hyperbola in P, P'. Show that the tangents at P, P' meet on the tangent
at B.

6

3. Having given a focus of an ellipse, a tangent and its point of contact,
and one other point on the curve, find the other focus. Show that, when the
construction is possible, it leads to two solutions.

4. If TP, TQ be tangents from a point T to a central conic, S, H the foci,
show that the bisectors of the angle PTQ meet the non-focal axis in two
fixed points when T describes a circle through S, H.

5. Show that if S, H be fixed points and through a point P lines PT, PU
be drawn so that the angles SPII, TPU have common bisectors, a conic can
be described with S, II as foci to touch PT and PU.

6. If the normal at P meet the non-focal axis at G', show that the projection
of PG' upon either focal distance is equal to the focal semi-axis.

7. Prove that if the normal at P to a central conic meet the focal axis at
G and the non-focal axis at G', then PG '

: PG— CA 2
: CB 2

.

8. Prove that the pole of the tangent at P to a central conic with regard
to the auxiliary circle lies on the ordinate of P.

9. If SY, SZ be perpendiculars from a focus 8 to tangents TP, TQ the
perpendicular from T to YZ passes through the other focus H

.

10. PQ, PR are two focal chords of a conic. Show that QR meets the
tangent at P at the pole of the normal at P.

11. PQy PR are the two focal chords through a point P of a conic. Prove
that the pole of QR lies on the normal at P.

12. Prove that the perpendicular drawn through a focus $ of a conic to any
chord PQ meets the directrix corresponding to 8 in a point of the diameter
conjugate to PQ.
Given a triangle ABC, with an acute angle at C, show that there is only

one conic which has AB for a directrix and CA, CB for a pair of conjugate
diameters ; and show how to determine the auxiliary circle and the points of
intersection of this conic with CA and CB.
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13. Two parabolas have a focal chord in common and have their axes

parallel. Prove that they intersect at right angles. Conversely prove that,

if two parabolas have their axes parallel and intersect at right angles at a

point, they have a common focal chord which passes through this point.

14. Two parabolas have a common focus. Show that they cannot have

more than two real common points, which lie on the internal bisector of

that angle between the directrices which contains the common focus.

15. A rectangular piece of paper ABCD is folded so that the comer G falls

on the opposite side AB. Show that the crease envelops a parabola ofwhich C
is the focus and AB the directrix.

16. The vertex of a constant angle moves on a fixed straight line, while

one of its sides passes through a fixed point S. Show that the other side

envelops a parabola, of which S is a focus.

17. Prove that a focal chord of a parabola is equal to 4.SP, where S is the

focus, and P is the point where the tangent parallel to the given chord touches

the curve.

18. From a point T on the directrix of a parabola tangents TP, TQ are

drawn and the chord PQ meets the directrix at K and the diameter through T
at R. Prove that

(i) 8P.8Q= SR.SK,

(ii) PQ 2=A.RS.RK.

19. If TP, TQ are tangents from a point T to a parabola having S as focus,

prove that the triangles SPT, STQ are similar, and that ST 2=SQ.SP .

If tangents from a point 0 on the axis of a parabola meet any other tangent

at points L and M, prove that 8L=8M and that S, L, 0, M are concyclic.

20. A fixed tangent c to a parabola k is met at P by a variable tangent t,

and u is the perpendicular to t through P in the plane of k. Prove that u
always touches a second fixed parabola s, whose axis is perpendicular to that

of k ; and that each of k, s touches c at a point on the directrix of the other.

21. Prove that chords of a conic s which subtend a right angle at a fixed

point O not on 8 envelop a conic of which 0 is a focus and the polar of 0
with regard to 8 is a directrix. [Use Exs. VIIa, 13.]

22. Show that, in any conic, the focal chord of curvature at P is equal

to the focal chord of the conic parallel to the tangent at P.

23. 8 is a focus of a conic s ,
and 8Y is the perpendicular from S on the

tangent at P. If k is the circle centre 8 and radius SY, and if Z be an inter-

section ofSP with k, show that the tangents at P, Z to s, k respectively meet

on a common chord of k and 8, and that the point of contact of the second

tangent to s from this intersection lies on S Y.

24. Given one focus 8 of a hyperbola, one asymptote, and a tangent t,

show how to construct the other asymptote and focus. Show also how to

find the second tangent to the hyperbola from any point of the given tangent t.

25. Show that the hyperbola c, which has foci at two given points, P, Q of

an ellipse k and passes through one focus 8 of k, must also pass through

the other focus H, and that the directrix of c corresponding to the focus P
meets 8H at its intersection G with the normal at P to k.

Show also that, if the normals to k at P, Q meet SH at G, K respectively,

the line joining the middle points of PQ, GK is perpendicular to PQ.

26. A variable conic k has one focus at a fixed point 8 and passes through

two other fixed points A and B. Prove that the second focus H describes a
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composite locus, composed of an ellipse and hyperbola passing through S and
having A, B for foci.

Show that the directrix of Jc corresponding to the fixed focus 8 must pass

through one or other of two fixed points on the line AB
;
and that, for any

particular position of Jc, the intersection of this directrix with AB is on the

normal at 8 to that part of the composite locus upon which the other focus

H lies.

27. Prove that, if p, q are two fixed perpendicular diameters of a conic Jc,

the meet of conjugate lines with respect to Jc, which are parallel to p, q, lies

on the rectangular hyperbola which has p, q for asymptotes and passes

through the foci of Jc.

EXAMPLES VIIIb

[Except where otherwise stated, the axes of co-ordinates are rectangular.]

1. A right circular cone of semi-vertical angle 60° is cut by a plane inclined

at an angle of 15° to the axis of the cone and whose perpendicular distance

from the vertex is 4 inches. Construct the asymptotes, foci and vertices of

the section.

2. Draw the hyperbola whose directrix is x—0, focus (2, 0) and eccentricity

2-5.

3. Draw a triangle SPH with sides 8II— 4 inches, SP= 3 inches, HP—
2 inches. Draw the tangent at P to the ellipse which passes through P
and has S, H for foci ; and by geometrical construction find the four vertices

of the ellipse, and its directrix corresponding to 8,

4. A hyperbola has its vertices at the points (0, 0), (4, 0) and passes through
the point P (5, 4). Construct the tangent at P, the foci and the asymptotes.

5. A hyperbola has the lines y=± l-5x for asymptotes and passes through
the point (5, 4). Construct its foci and vertices.

6. Construct the directrices of the possible conics which have the origin

for focus and pass through the three points ( - 1, 1), (3, 3), (5, 0).

7. The asymptotes of a hyperbola are parallel to the lines x2 - 4y 2—0.
One focus is the point (3, 0) and the semi-latus rectum— 2. Find the

asymptotes in position and draw the curve.

8. A conic has the axis of y for directrix, the point (1*5, 0) for corresponding

focus and eccentricity=2. Draw a chord through the focus which shall be
3*5 units long.

9. Draw a circle of radius 1-5 inches, and mark a point 8 distant 1 inch

from the centre. Construct the polar z of 8 with respect to the circle, using

the ruler and pencil only.

Mark a point I
r
on the circle (but not on the diameter through S) and

find a tangent from Y to the ellipse which has 8 for a focus, z for corresponding
directrix, and the circle for its auxiliary circle.

Find also the points in which this tangent (i) touches the ellipse, (ii) meets a
perpendicular tangent to the ellipse.

10. A parabola touches the straight lines

y—x+ 1, 2y=x+4, 2y 4- 4x -f 1 = 0, #=0.
Construct the focus, axis and vertex of the parabola.

11. The focus of a conic is the origin and the conic passes through the
point (3, 4). If the semi-latus rectum= 3*5 and the eccentricity= J, construct
the second foci of the conics which satisfy the conditions.
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12. Given the foci 8, H of a hyperbola are 4 inches apart and a tangent
making an angle of 60° with SH divides SH internally in the ratio 3 : 1, find

(i) the point of contact of the given tangent, (ii) the vertices, and (iii) the

asymptotes.

13. ABC is a triangle with BC— 4 inches, CA = 3 inches, AB— 3*5 inches.

Find the foci of the conic which has CA, CB for a pair of conjugate diameters

and AB for a directrix ; and determine the intersections of this conic with CA
and CB.

14. A conic has a focus at the point (2, 0) and touches the lines x+2y—4t,

2y — x— 4 and x+ y= — 3. Construct the centre, the other focus, the vertioes,

the directrices and the extremities of the latera recta.

15. A hyperbola touches the co-ordinate axes and the line a:-f-2y= 3, and
has one focus at the point (2, 1). Find its asymptotes, the other focus, and
the directrices ; and its points of contact with the three given tangents.

16. A conic touches the axis of x at the point (3, 0), and also touches the

axis of y ; and it has the point (2, 3) for a focus. If the angle between

the axes of co-ordinates be 75°, construct it as an envelope.

17. The angle between the positive directions of the axes of co-ordinates

being 60°, a conic having a focus at the point (3, 2) touches the axis of y
at the point (0, 3) and also touches the axis of x. Construct the point of

contact of the x-axis, the second focus, the directrices, the auxiliary circle,

the tangents perpendicular to the co-ordinate axes, and the vertices.

18. ABCD is a rectangle, AB— 2 inches and BC= 1 inch. A conic touches

AD, AC, BC and has one focus at the middle point of AB. Construct the

points of contact of AD, AC, BC and the axes of the conic in position and
length.

19. A parabola touches two lines AB, AC at B and C, where AB= 5 cm.,

AC=1 cm., and the angle BAC= 45°. Find its focus and directrix.

20. A parabola has the axis of y for directrix and touches the line 2y—x
at the point (4, 2). Find its focus and axis, and the other extremity of the

focal chord through (4, 2).

21. A parabola has three-point contact with the circle x2+ y
2— 4 at the

point (2, 0) and touches the line x- 3?y + 4= 0. Find the point of contact

of this line with the parabola, and the axis, focus and directrix of the parabola.

22. An ellipse has the points (0, 0) (6, 0) for the extremities of the major

axis, and passes through the point P (1, 1*5). Construct the tangent at P,

the foci, and the circle of curvature at P.

23. ACB is a triangle right angled at C, with sides CB=2 inches, CA— 4
inches ; and D is the point on AB produced such that the angle BCD— 30°.

The triangle ABC is self-polar with respect to a parabola whose axis is parallel

to CD.
Construct (i) the points P, Q, B in which the parabola meets the parallels

to the axis through A, B, C respectively ;
(ii) the focus ; (iii) the circle of

curvature at P.



CHAPTER IX

IMAGINARY ELEMENTS

133. Point and line co-ordinates in a plane. The position

of a point P in a plane may be defined by two co-ordinates x, y
given by the intercepts cut off, on two fixed axes, between their

intersection or origin and the parallels through P to the axes. In
this system of co-ordinates the co-ordinates of the points of any
straight line satisfy an equation of the first degree

Ax +By +(7— 0.

If we divide this equation by C it takes the form

Ix+my + 1 =0.

A straight line is therefore completely defined when we know the

two coefficients l
f m. These may then be spoken of as the

co-ordinates of the line.

The co-ordinates of the points of a curve satisfy a relation which
is called the Cartesian equation of the curve.

In like manner the co-ordinates of the tangents to a curve satisfy

a relation which is called the tangential equation of the curve.

If the co-ordinates l, m of a line satisfy a relation of the first

degree, this can be put into the form

la + mb + \ =0,

and this shows that the fine whose co-ordinates are Z, m passes

through the point whose co-ordinates are a, b.

An equation of the first degree in l
,
m is therefore the tangential

equation of a point and the lines whose co-ordinates satisfy this

equation are rays of a pencil.

If 1=0, m=0, x or y or both must be infinite if Ix+my is to

be equal to the finite quantity -1. Hence 0, 0 are the

co-ordinates of the fine at infinity. Similarly if £=0, y=0 the

lines through the origin must have l or m or both infinite.

Notice the duality implied by this arrangement of point and
line co-ordinates. By giving the symbols a different interpretation

and taking l
, m as co-ordinates of a point, x

, y as co-ordinates of a
170
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line and bearing in mind the symmetry of the relation of incidence

lx+my + 1=0 in x
, y and l, m respectively, we see that to any

geometrical theorem corresponds another in which points and lines

are interchanged. This is the principle of duality which we have

already deduced from the theory of reciprocal polars in Art. 57.

The present result shows that this principle is entirely independent

of the theory of reciprocal polars.

134. Point and plane co-ordinates in space. In like manner
the position of a point P in space may be defined by taking three

axes OX, OY
,
OZ through an origin 0 and drawing through P

planes parallel to YOZ
,
ZOX

,
XOY to meet OX, OY, OZ respec-

tively at L, M, N. Then the segments OL, OM, ON taken with

proper sign are denoted by x, y, z and called the co-ordinates of the

point. It is shown in treatises on analytical geometry (see Salmon,

Geometry of Three Dimensions, or C. Smith, Solid Geometry) that in

this system of co-ordinates a plane is represented by an equation

of the first degree in the co-ordinates which may be put into the

form

Ix+my + nz + l =0 (1)

and conversely that every such equation defines a plane.

(I, m, n) may be called the co-ordinates of the plane and the

above equation expresses that the plane (l, m, n) and the point

(x, y, z) are incident.

The co-ordinates of a point on a surface satisfy a single equation

in x, y, z which is called the Cartesian equation of the surface.

The co-ordinates of a plane tangent to a surface satisfy a single

equation in l, m, n which is called the tangential equation of the

surface.

The equation (1) expresses, when x, y, z are treated as constants

and l, m, n as variables, that the co-ordinates of the planes passing

through x, y, z satisfy the equation (1) of the first degree in l, m, n.

Therefore such an equation of the first degree in l, m, n represents

a set of planes through a point. Such a set of planes is called a

Star of planes and the point through which they pass is called

the vertex of the star.

An equation of the first degree in l, m, n is therefore the tangential

equation of a point.

As in Art. 133, l =0, m =0, n =0 are the co-ordinates of the plane

at infinity, whereas #=0, y= 0, z= 0 correspond to infinite plane-

co-ordinates.
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185. Principle of duality in space. The symmetrical form of

the equation

Ix +my+nz-f 1 =0

implies that if the point (x> y, z) and the plane (l, m
,
n) are incident,

so are the plane (x, y, z) and the point (l, m, n). Thus to any theorem

connecting points and planes, there corresponds a reciprocal

theorem connecting planes and points, obtained from the first by

interchanging the interpretations of x
} y, z and Z, m, n. In this

translation the join of two points corresponds to the meet of two

planes. Hence a straight line corresponds to a straight line. To

the set of lines through a point, which is called a star of lines,

corresponds the set of lines in a plane, which is called a plane of

lines. To a star of planes through a point corresponds the set of

points of a plane, which is called a plane of points. To a range

of points on a line corresponds a set of planes through a line or axis
,

which is called an axial pencil. To a set of lines through a point

and lying in a plane (a flat pencil) corresponds a set of lines lying in

a plane and passing through a point (another flat pencil). To

a point on a surface corresponds a tangent plane to the corresponding

surface. To the tangent plane at a point corresponds the point of

contact of the corresponding tangent plane.

To the points where a straight line cuts a surface correspond the

tangent planes drawn through a line to the corresponding surface.

136. Cross-ratio of an axial pencil. An axial pencil of four

planes a,
ft, y, 8 through a line x, has a definite cross-ratio. For

cut it by any two straight lines Wj, u2 . These meet ccfiyd in ranges

A^CiDx, A2B2C2D2 respectively. On x take two points Vl9 V2 .

The planes u{Vi> u2V2 meet in a line u3 which cuts aftyS in a range

A3B3C3D3 . Then the ranges A^C^, A 3B3C3D3 are perspective

from Vx ;
and the ranges A 3B3C3D3> A2B2C2D2 are perspective

from V2 . Hence we have

{A lBlCl
Dl}~{A 3B3C3D3}

{A 3B3C3D3 ={A2B2C2D2}.

That is, {AxBxCxDx} ={A 2B2C2D2}.

Hence all straight lines meet an axial pencil of four planes in

ranges having the same cross-ratio. This cross-ratio is defined

to be the cross-ratio of the axial pencil.

An axial pencil, like a range and a flat pencil, is known as a one-

dimensional geometric form of the first order. We shall refer to
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the axis of such a pencil as its base, and axial pencils with a common
axis will be termed cobasal.

187. Imaginary elements. We are now in a position to intro-

duce into Geometry a new set of ideal elements, which are called

imaginary elements. In Art. 4 elements at infinity were introduced,

in order to enable us to state theorems on the straight line in all

their generality, without having to consider cases of exception.

Thus, after the introduction of the elements at infinity, we were

able to state, quite generally, that coplanar lines always have a

point of intersection, that a straight line and a plane always have a
point of intersection, that two planes always have a straight line in

common.

But, as we proceeded, we met another set of cases of exception

which could not be dealt with in the same manner. For example,

two collinear projective ranges might have two real self-corre-

sponding points, or they might have none. Nevertheless the

nature of two such ranges is not intrinsically different in the two

cases, as appears from the fact that any property which we prove

for two such ranges which have self-corresponding points holds

equally for ranges not having self-corresponding points, provided

the property does not involve the reality of the self-corresponding

points.

In like manner a straight line may cut a circle or conic in two

points, or it may not cut the curve at all. Two tangents may be

drawn from a point to a conic, or none may be drawn.

The validity of the results we have reached therefore depends

on the elements of the figures having certain relative positions,

without which some of the results apparently disappear.

Now it would be extremely convenient if these restrictions could

be removed and if, by introducing a new set of ideal elements, which

have no visual existence, we could state our theorems in a perfectly

general manner.

Such ideal elements are provided for us by the method of

co-ordinates explained in Arts. 133, 134.

For any geometrical theorem can be translated into an algebraic

theorem connecting point and line co-ordinates (or point and plane

co-ordinates). If in this theorem certain real elements appear, the

co-ordinates of these elements can be deduced from the solution

of certain algebraic equations involving the data. If by altering

the numerical values of these data, without altering their nature,

these elements disappear from the geometrical theorem, they will
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not disappear from the algebraic theorem, for an algebraic equation

continues to have solutions, even when its constants are such

that these solutions are not real. The algebraic solution will

therefore still give values for the co-ordinates of those elements

which have disappeared from the geometrical solution, but these

co-ordinates will be complex, that is of the form a+ib
9 where

-1 and a, b are real. The points, straight lines or planes

defined by such co-ordinates have no visual existence
;
nevertheless

all analytical theorems remain true of them and therefore all

geometrical operations, which are interpretable by means of analysis,

will continue to hold for such imaginary elements. And this is

true not only of points, straight lines and planes, but of all curves

and surfaces of higher degree.

Thus the locus

x2 + y
2 = - a2

is not a real circle : nevertheless it possesses, analytically, all

the properties of a circle and, if we admit imaginary elements,

we may perform with it the operations which we can perform

with an ordinary circle.

We will therefore, from this point onwards, assume the existence

of such imaginary elements, so that if a construction which leads to

certain elements in one case fails to lead geometrically to such

elements in another case, we shall say that those elements are still

there, but are imaginary.

Thus we know that two projective collinear ranges will generally

have two self-corresponding points. This shows that the problem

of determining the self-corresponding points of two such ranges is

analytically capable of two solutions. Hence it will have two
analytical solutions in all cases. We shall then say that two such

ranges have always two self-corresponding points, but that these may
be real or imaginary.

In the same way a straight line will be conceived as always

cutting a conic at two points, real or imaginary
;
and from a point

two tangents, real or imaginary, can always be drawn to a conic.

Again we know that, in general, two distinct conics will intersect

in four points. The problem of finding the intersections of two
conics has therefore four analytical solutions. We shall say that it

has always four geometrical solutions, that is, every two conics

have four points of intersection, real or imaginary.

The student may object that this introduction of imaginary

elements is really, from the geometrical point of view, a mere
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verbal delusion, for in what way can we derive help in practice

from a construction in which one or more steps are imaginary ?

The answer is that these imaginary elements cannot, indeed, be

used in drawing-board instructions, but it may, and does, happen

that a demonstration
,
involving such imaginary elements, leads to a

result which is free from them. Thus by means of imaginary

points and lines we can obtain real theorems, precisely as we can,

by means of points and lines at infinity, obtain theorems relating

to figures at a finite distance.

It is true that in all cases such theorems might be obtained

by reasoning with purely real elements. But such proofs are often

exceedingly complicated
;

also two theorems which, when we use

imaginary elements, are only particular cases of the same theorem,

require, if we restrict ourselves to real elements, proofs which

are not infrequently quite dissimilar. The simplicity and unity

obtained by the introduction of imaginary elements add very greatly

in power to the methods of geometry.

138. Conjugate imaginaries. If the co-ordinates of an element

are of the form a + ib, the element whose co-ordinates are obtained

from those of the first by changing the sign of i is said to be a

conjugate imaginary to the first element.

Thus the point (0, -i, 1 +i) is the conjugate imaginary point

to (0, i, 1 -i).

If two elements are incident, their conjugate imaginary elements

are also incident.

For any equation involving imaginaries may be reduced to the

form U + iV — 0, where V and F are real. We have therefore £7=0,

F=0, and therefore £7 -iF=0, that is, the equation obtained by

changing the sign of i everywhere is also satisfied.

It Jollows similarly that if a real and an imaginary element

are incident, the real element and the conjugate imaginary element

are also incident. For a real element may be looked upon as its

own conjugate imaginary.

If an element A of any nature is determined by two other elements

P, Q (points, planes or intersecting lines), its conjugate imaginary

element A' is determined by the conjugate imaginary elements

P', Q\ For since A, P are incident .*. A', P' are incident
;
and

since A, Q are incident A', Q' are incident. Hence A' ^P'Q'.

In particular if Q = P' Q' =P or A' = P'P

=

A. Hence the element

(if any) determined by two conjugate imaginary elements is always

real.

13
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In particular the join of two conjugate points or the meet of two
conjugate planes is a real line. Two conjugate lines which intersect

determine a real point of intersection and a real plane.

The elements determined by a real element A and two conjugate

imaginary elements P, P' are conjugate imaginary. For A being

its own conjugate imaginary, AP is the conjugate imaginary to

AF.
Also, if S be any locus or envelope which is real or into whose

analytical equation only real coefficients enter, and P be any

imaginary element incident with 8 (i.e. lying on or tangent to S)
9

the relation of incidence is expressed by an equation

U+iV=0.

This implies U - iV =0 .

But the latter is what we obtain if we change the sign of i in

the co-ordinates of P, since the coefficients of the equation for S
do not contain i. Hence P' is also incident with S.

It follows that if two real loci have one imaginary intersection P
,

the conjugate imaginary point F is also an intersection, since it

must lie on both curves. The corresponding chord PP', being

determined by two conjugate elements, is real.

ii

Examples

1. Prove that, if J, J are two conjugate imaginary points on a straight

line, the middle point 0 of IJ is real and OJ 2 is real and negative.

2. If /, J are two conjugate imaginary points on a straight line, prove
that they can be obtained as the imaginary double points of an elliptic

involution.

3. Show that any two conjugate imaginary elements of a form with a real

base can be obtained as the double elements of an elliptic involution on that
base.

4. Prove that if an imaginary line l do not intersect its conjugate imaginary
V, the lino drawn from a real point P to meet l and V is always real.

5. Show that the reciprocal elements of two conjugate imaginary elements
are themselves conjugate imaginary when the reciprocal elements of real

elements are real.

6. Show that conjugate imaginary elements project into conjugate imaginary
elements when the projection is real.

139. Number of real elements incident with an imaginary

element. An imaginary point has only one real line through it,

namely the one joining it to its conjugate imaginary point. For if it

had two it would be the intersection of two real lines and therefore

a real point.
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Similarly an imaginary plane has only one real line lying in it,

namely its intersection with its conjugate imaginary plane. For

a plane through two real lines is a real plane.

An imaginary line, for a similar reason, cannot have two real

points on it. But imaginary lines may be of two kinds. A line

of the first kind has one real point on it. A line of the second

kind has no real point on it.

By the last Article the conjugate imaginary line p
f
to a line p

of the first kind passes through the real point on p . p, p
f
therefore

intersect and, being conjugate, determine a real plane.

Thus a line of the first kind has one real plane passing through it.

It cannot have a second, for it would then be the meet of two real

planes and so be a real line.

Conversely, if an imaginary line p has one real plane passing

through it, its conjugate imaginary line p' lies in this plane and

meets p at a real point, so that p is of the first kind.

A line of the second kind has therefore no real plane through it,

as well as no real point on it, and it does not intersect its conjugate

imaginary line.

Such lines may be obtained by taking conjugate imaginary

pairs P, P' and Q ,
Q' on non-intersecting real lines a, b respectively.

Then P, P', Q,
Q' cannot be coplanar and the lines PQ

,
P'Q' are

conjugate imaginary lines which do not intersect.

140. The circular points at infinity. Consider the two

(imaginary) points in which the line at infinity i
00 in a plane meets

any circle in the plane. Since the pole of ?‘°° is the centre C of

the circle the involution of conjugate points on i
00

is given by the

intersection of i
00 with the involution of conjugate rays through C.

But since conjugate diameters of a circle are at right angles (Art. 54)

the latter involution is the rectangular involution through C.

The two intersections O, O' of i°° with the circle are therefore

the double points of the involution in which the rectangular

involution through C meets i
00

.

But if we take any other point 0 in the plane and join 0 to

the points of the involution on i
00 we obtain an involution through

0 whose rays are parallel to the corresponding rays of the involution

through C. The involution through 0 is therefore also rectangular.

Thus the double rays of all rectangular involutions pass through

the same two points O, O' at infinity. These points O, O' are

therefore determined quite independently of the particular circle

chosen. Hence all circles pass through the same two points O, O'.
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Conversely every conic which passes through 12, 12' is a circle.

For let s be such a conic and let A, B, C be any three other points

on s. Describe the circle c through A, B, C. Then it passes

through 12, 12'. c and s have five points A, B, C, O, O' common
and therefore coincide.

For these reasons the points 12, O' are called the circular

points at infinity. Being the intersections of a real line (the line

at infinity) with a real curve, they are conjugate imaginary points

by Art. 138.

Two interesting cases of circles arise when the conic through

O, O' degenerates into a line-pair. If O, O' are on the same com-

ponent of the pair, the latter consists of the line at infinity and an

accessible straight line. Thus any straight line, together with

the line at infinity, may be regarded as forming a circle of infinite

radius.

If O, O' be on different components of the pair we see that any

pair of lines through O, O' form a circle.

If their point of intersection P be real, every line through P is

a tangent to the curve at P {see Art. 44) and the circle is then a

point-circle {see Art. 112).

141. Circular lines. The lines joining any point of the plane

to O, O' are called the circular lines through the point. If

the point be real, the circular lines through it are conjugate

imaginaries.
v
From the last Article the circular lines through

a point are the double rays of the rectangular involution through

the point.

Hence any pair of lines at right angles are harmonically conjugate

with regard to the circular lines through their intersection.

It follows that if in any involution pencil the circular rays are

mates, the double rays are at right angles. Conversely if the double

rays are at right angles the circular rays are mates.

Since by Art. 52 the self-corresponding rays of conjugate pencils

through a point C, that is, the double rays of the involution of

conjugate lines through C
,
are the tangents from C to the conic, it

follows that, when the conic is a circle and C its centre, so that the

conjugate lines through C form a rectangular involution, the circular

lines through C are the tangents from C to the circle, and the

points 12, 12', where they meet the polar of (7, are their points of

contact. Thus two concentric circles have the same tangents

at G, 12' and are to be regarded as touching one another at

these points.
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14*2, The arms of an angle of given magnitude determine
with the circular lines through its vertex a constant cross-ratid.

Consider an angle of given magnitude rotating about its vertex 0.

Its arms trace out two directly equal concentric flat pencils of which

the self-corresponding rays are by Art. 91 parallel to the asymptotes

of a circle, that is, they are the circular lines through 0. Thus if

POP', QOQ' be any two positions of the angle, (OP, OP'), (0Q> OQ')

are two pairs of corresponding rays
;
they determine therefore the

same cross-ratio with the circular lines through 0 (Art. 88).

If on the other hand two angles with different vertices 0, 0'

have their arms parallel, the parallel arms and the circular lines

through 0, 0' determine the same range on the line at infinity.

They form two perspective flat pencils and the cross-ratios are the

same.

Combining the above two results, if an angle of given magnitude

be moved about in its own plane anyhow, it defines a fixed cross-

ratio with the circular lines through its vertex.

The converse theorem that, if a moving angle determine with the

circular lines through its vertex a constant cross-ratio, the magnitude

of the angle is fixed, is readily proved.

Examples

1. Show that any two concentric projective pencils in a plane can always
be projected into directly equal pencils.

2. Show, by considering the circle as the product of two directly equal
pencils and applying the construction of Art. 91 for its asymptotes, that
each of the circular lines through a point may be looked upon as making any
given angle with itself.

3. Show analytically that the circular lines are parallel to the lines y~ ±ix
and verify that they make the same angles ±tan" J

i with every straight line

in the plane.

4. Discuss the form assumed by the anharmonic property of four fixed

points and one variable point on a conic, when two of the fixed points are the

circular points.

5. Prove that if OA, OB be two fines intersecting at 0 the cross-ratio

0{AQBQ'}— e2i0, where 6— angle AOB.

143. The circular points are conjugate with regard to any
rectangular hyperbola. For in a rectangular hyperbola the

double rays of the involution of conjugate diameters are at right

angles. Therefore the circular lines through the centre are con-

jugate. The points where they meet the polar of the centre (i.e.

the line at infinity) are therefore also conjugate with regard to the

hyperbola. But these are the circular points Q, 1}'.
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Conversely if O, O' are conjugate points with regard to a hyper-

bola, the circular lines through the centre are conjugate lines and

the asymptotes are at right angles.

144. The orthoptic Circle. Consider the pencils of conjugate

rays with respect to any conic s through the circular points O, O'.

These pencils are projective by Art. 52. Their product is therefore

a conic passing through O, O', that is, a circle.

Let P be any point on this circle. Then PO, PO' being lines

through P conjugate with regard to s are harmonically conjugate

with regard to the two tangents from P to s (Art. 52). Therefore

these two tangents are at right angles (Art. 141).

Conversely if these two tangents are at right angles PO, PO'
are mates in the involution of conjugate rays through P, and P
lies on the product of the conjugate pencils through O, O'. We
have then the theorem :

The locus of the intersection of perpendicular tangents to a

conic is a circle.

The circle is called the orthoptic circle of the conic, from

the property that at any point of it the conic subtends a right

angle. It is also called the director circle, by analogy with

its degenerate case when the conic is a parabola, when the locus

of intersections of tangents at right angles is the directrix (Art.

128). The explanation of this from our point of view is that in

the case of the parabola OO' touches the curve and is therefore a

self-corresponding ray of the conjugate pencils through O, O'.

These are accordingly perspective and the locus breaks up into

OO' (the line at infinity) and another straight line, which is the

directrix.

The orthoptic circle is concentric with the conic. For the

tangent at O to the orthoptic circle is the line through O conjugate

to OO' with regard to the conic (Art. 39). It must therefore pass

through the pole of OO', i.e. through the centre of the conic. Similarly

the tangent at O' to the orthoptic circle passes through the centre

of the conic. The pole of OO' with regard to the circle (i.e. the

centre of the circle, OO' being the line at infinity) is thus the centre

of the conic.

The radius of the orthoptic circle is immediately found by

drawing the (perpendicular) tangents at the extremities of the

axes. The semi-diagonal of the rectangle so formed is the radius

required. It is VCA2 + CB2
. In the hyperbola CB2 = - CB

1
2

,
so

the radius of the orthoptic circle = \/CA2 -CB
X
2

. HCBl
2>CA2
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the orthoptic circle is imaginary. If CB
X
2 =±CA2

, or the hyperbola

is rectangular, it shrinks into a point at the centre. Thus the

only real perpendicular tangents to a rectangular hyperbola are the

asymptotes.

145, The four foci of a conic. By the definition of a focus

the involution of conjugate lines through it is rectangular. Thus

the tangents from a focus to the conic, being the double rays of

such an involution, are the circular lines through the focus and pass

through O, O'. Conversely a point F which is the intersection

of tangents from O, O' must be a focus, for the double rays of the

involution of conjugate rays through F will be the tangents from F
t

namely FO, FQ'. But these being the circular lines, the involution

defined by them must be rectangular, or F is a focus.

Since two tangents t
x ,

t2 can be drawn to a conic from O and

two tangents t{, t2 can be drawn from O', a conic will have four

foci, namely t
x
t\, txt2 ,

t2tX9 t2t2 . Of these two are real and two

imaginary, as follows. Take one tangent t
x
from O. This being

an imaginary line in a real plane, has a real point F
x
on it (Art. 139).

The other tangent from F
x
must be a conjugate imaginary line to t x>

for two imaginary tangents from a real point to a real conic must be

conjugate imaginaries, as can be shown from reasoning similar to

that used in Art. 138 to prove that intersections of a real line and a

real conic are conjugate imaginaries.

This other tangent from Fj, being a conjugate imaginary to

tu i.e. to jFjO, must be 2^0'. Call it then Let t2 be the

other tangent from O. If F2 be the real point on it, then F2
Q' =

t2\ and t2 ,
t2 are conjugate imaginary lines. F

x , F2 are the two

real foci of the curve. t xt2 ,
t2ti, which we may call F3 and jP4 ,

are

the intersections of non-conjugate imaginary lines and are imaginary

points. They are, however, themselves conjugate imaginary

points, being intersections of two conjugate imaginary pairs (Art.

138). Hence F3F4 is a real line.

Now by Art. 50 the diagonal triangle of the complete quadrilateral

hh'hh' circumscribed to the conic is self-polar with regard to the

conic. But the sides of this diagonal triangle are F
Y
F2 ,

F3F±, 012'.

The meet of F
x
F2i F3F4 is therefore the pole of 00', i.e . the centre C

of the conic
;
F3F4 ,

FXF2 are then conjugate diameters. By the

harmonic property of the complete quadrangle Fl
FsF2F4 the two

sides of the diagonal triangle through C, viz. CO, CO', are har-

monically conjugate to the two sides of the quadrangle through C,

namely FXF2 ,
F3F±. CO, CO' being circular lines FXF F^F^
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are perpendicular and so must be axes. The two imaginary foci

therefore lie on what we have called hitherto the non-focal axis of the

curve.

They are, in fact, the imaginary intersections of this axis with

the conic k of Art. 115, and the double points of the elliptic involution

of orthogonal points on the non-focal axis (Art. 116). Any two

rectangular conjugate lines meet this axis in a real pair of mates

Q ,
Q' of this involution, of which C is the centre, and F3f F4 the

double points. We have therefore

CF3
2 =CQ.CQ' (1)

Thus CF3
2 is real, and so must be negative, or F3 would be real.

Clearly CF3 is the semi-diameter of the rectangular hyperbola k

perpendicular to CFX
(Fy being a real focus). By Art. 83, CFi

and CF3 must be equal in absolute length.

Thus CF3
2 = - CF

X
2 - - e2.CA 2

(2)

146. The two eccentricities of a conic. The reasoning of

Art. 118, which establishes the eccentricity property, still holds

good formally of the foci F
:]
and F4 and of the corresponding

(imaginary) directrices
;
an eccentricity e' corresponding to these

foci therefore exists, but now the discrimination of the different

types of conic from the reality of the intersections of the circle with

the vanishing line has no longer any meaning.

We may find this eccentricity e' as follows. If the non-focal

axis, on which F3 lies, meets the curve at B, B' and the directrix

corresponding to F3 at Y
,
we have, since {F3BYB'} = -

1

,

CFS,CY =CB2

Now e’ =FSB : BY = (CB - CFS )
:(CY- GB)

= (CB - CF3) : - C'b) =CF3 : CB,

so that CF3 =e'.CB ,
which gives a relation symmetrical with CF4 =

e.CA . Using (2) of Art. 145, we have

e'2.CB2 +e2.CA2 -0,

or e'2(l - e2
)
+e2 =0,

which leads to the more symmetrical form

A conic has therefore two eccentricities, corresponding to the

two pairs of foci, and connected by the above relation. If the conic
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is an ellipse, e' is a pure imaginary
;

for the hyperbola e and e are

both real and greater than unity. For the parabola e
9 = «

.

147. Confoeal conics. If two foci FXi F2 of a conic lying on

the same axis be given, the other foci F3) F4 are determined. For

they are the remaining vertices of the complete quadrilateral formed

by the four lines F
x Q, Fx

O', F2 12, F2O'.

In particular, conics which have the same two real foci have

all their foci the same. Such conics are called confoeal conics.

They touch four fixed lines, namely the sides of the quadrilateral

mentioned above.

148. The circular points are foci of a parabola. In the case

of a parabola the line at infinity QQ' is a tangent. Thus t2) t2

coincide with 1212'. The quadrilateral of tangents from 12, 12'

reduces therefore to a triangle. F
x , i.e. remains as the

only accessible real focus of the curve, F2 is the point of contact

of the line at infinity, i.e

.

the point at infinity on the axis. F3 and

F4 become intersections of t
x
and t{ with the line at infinity, that

is, they coincide with 12, 12' which are thus foci of the curve.

We have therefore an exception to the theorem of the last Article,

for the giving of 12, O' does not here determine the other foci.

Example

Show that two parabolas with a common focus, but different axes, have one
real accessible common tangent, and one only.

Discuss the case where both the focus and axis are common.

149. Imaginary projections. By means of the circular points

a number of important theoretical results in projection can be

deduced.

Thus any two conics can always be projected simultaneously

into circles.

For let A, B be any two of the intersections of such conics. Then

by projecting A, B into the circular points in any plane, the conics

are projected into circles.

This result is of great importance, since it enables us to apply

to a pair of conics any projective theorem proved for a pair of

circles.

This projection of two given points into the circular points is of

course imaginary if the two given points are real. If the two given

points are conjugate imaginary points, they will in general be given

as the intersections of a real straight line x with a real conic 8,
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when x and s do not cut in real points. Take 0 the pole of x with

regard to s and two pairs (OP, OP'), (OQ, OQ') of conjugate lines

through 0 with regard to s. Project x to infinity and the angles

POP', QOQ' into right angles (Art. 19). 0 projects into the centre

of the conic and (OP, OP'),
(
OQ

,
OQ') into pairs of conjugate

diameters at right angles, i.e. into axes. But since a conic with

more than one pair of axes must be a circle, s projects into a circle

and its intersections with x into the intersections of a circle with the

line at infinity, that is, into the circular points. Thus a real pro-

jection transforms a pair of conjugate imaginary points into the

circular points.

Alternatively the two conjugate imaginary points may be given

as the double points of an elliptic involution on a real line x. Take

two pairs of mates (P, P'),
(Q ,

Q') of this involution, and join to

any point 0 outside the line. Then proceed as before.

Again two conics can always be projected simultaneously into

rectangular hyperbolas, by projecting two of their common points,

A, B into rectangular points at infinity. This can be done in

an infinite number of ways by taking AB as vanishing line in a

plane perspective, and the pole of perspective to be any point of

the circle on AB as diameter. If A, B are real, the perspective

is real.

Also two conics can always be projected into two confocal

conics, by taking two opposite vertices of the complete quadri-

lateral formed by their common tangents and projecting these

vertices into the circular points. The two projected conics have

the same tangents from the circular points and are therefore

confocal. Accordingly all projective properties of confocal conics

are properties of any pair of conics.

An important case of frequent occurrence is that of two conics

touching one another at two points A and B. By projecting A, B
into S3, S3' the conics transform into circles. The pole of AB,
which is clearly common to the two conics, transforms into the

pole of the line at infinity QQ', so that the circles are concentric,

and any projective proposition which is true of concentric circles

is also true of any two conics having double contact, real or

imaginary. The conics, of course, may not have real common
points at all.

150. The eight tangents to two conies at their four common
points touch a conic. We will take an example of the deduction

of theorems for two conics from theorems for two circles.
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Let two circles whose centres are S ,
0 (Fig. 53) intersect at A

and B. A and B are symmetrically situated with regard to SO,

Let C be the middle point of SO. The circle whose centre is C
and which passes through A also passes through B . Construct the

conic having S, 0 for foci and the circle with centre C and radius

CA for auxiliary circle. This conic touches the tangent at A to

the circle centre S
,
for this tangent is perpendicular to SA and A

is a point on the auxiliary circle of the conic (see Art. 125). Similarly

the conic touches the tangent at B to the circle centre S and the

tangents at A, B to the circle centre 0.

Consider now the other intersections of the two given circles,

Fig. 53.

namely O, O'. The tangents to the circle centre S at O, O' pass

through S since S is the pole of 00' with regard to the circle.

They are therefore $0, SO'. But these are also tangents to the

conic, since S is a focus.

In like manner the tangents at O, O' to the circle centre 0 are

tangents to the conic.

Hence the eight tangents at the four common points of two

circles touch a conic. Projecting the circles back into any two

conics we obtain the result

:

The eight tangents to two conics at their four common points

touch a conic.
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Reciprocating this theorem we obtain the following :

The eight points of contact of the four common tangents to two

conics lie on a conic.

EXAMPLES IXa

1. Prove that, if the circular lines through a point P on a conic meet the

conic again at Q , Q\ then QQ' is the polar of the Fregier point of P and is

equally inclined to the axes with the tangent at P.

2. If P xOQi, P2OQ 2 are two conjugate diameters of a conic, show that it is

possible to give a rule enabling us to select an extremity of each, so that the

ranges [P-J
2

, [P2]
2 are projective.

[Project the points at infinity on the asymptotes into the circular points.]

3. Show that four conics can be drawn through two fixed points /, J to

touch the sides of a given triangle ABC .

If P, Q, P, S are the poles of 1J with regard to these four conics, show
that the triangle ABC is self-polar with regard to any conic through P, Q,
B, S.

4. Two conics k 19 have double contact and a tangent t to lcl meets 1c 2

at P, P'. Show that [P] 2— [P'] 2
.

5. Two conics kv l 2 have double contact and from a point P of k\ tangents

t , t' are drawn to lc 2 . Show that
\
t] 2 7\ U'J

2
.

0. A and B are two fixed points on a conic and PT, PT ' the tangents

from a variable point P. Prove that if the cross-ratio of the pencil P(ABTT')
is constant the locus of P consists of two other conics touching the given

conic at A and B.

7. Show that if P and Q be the two distinct points of contact of a common
tangent to two conics which touch at L, and P be the point at which the

tangent at L to the conics meets PQ
,
then {BPUQ}= — 1, U being the point

where the chord through the other intersections of the two conics meets the

common tangent.

[Project the two conics into circles.]

8. Prove that the polars, with respect to the conics which touch CA, CB
at A, B respectively, of a given point Q in the plane of the triangle ABC
concur at a point of the line AB.

IfP is the point of contact of a tangent from Q to one of these conics, prove
that PQ , PC are harmonically conjugate with respect to PA, PB ; and show
that the locus of P is the conic through Q, A, B, C, for which QC is conjugate

to AB.
Express this theorem in metrical form when the conics are rectangular

hyperbolas with the same asymptotes.

[For first two parts project A, B into 12, Q'.J

9. Prove from Art. 138, Ex. 2 that any two conjugate imaginary points in a
plane can be projected into the circular points by a real projection.

10. Prove that, if two real conics have only two real intersections, they have
only two real common tangents and conversely.

11 . Show that the four points where the tangents from Q, 12' touch a

conic lie on the orthoptic circle.

12. Prove that any point P on a conic and the pole of the normal at P are

conjugate points with regard to the orthoptic circle of the conic.
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13. Prove that a conic is uniquely determined when its orthoptic circle
and two tangents, not at right angles, are given. Show how to construct the
foci from the above data.

14. A, B, C are three points on a conic 8 . Show that the lines through
A, By C which are conjugate respectively to BC9 CA , AB with regard to s

meet at a point H .

The point A is fixed on s, and B and C are a variable pair of a given
involution on st whose double points are L and M. Show that the locus of H
is a conic s\ which passes through L and M and touches 5 at A.

Prove also that if now the point A moves on #, then the conic s' moves in

contact with s and with a fixed conic which touches s at L and M .

[Project Ly M into the circular points.]

15. Py Q are any two real points inside a real conic s9 and (p, p'), {

q

f q')

are the imaginary tangents from P, Q to s. Prove that the diagonal triangle
of the complete quadrilateral pp'qq' is entirely real, and show how to construct
it.

Hence prove that, by a real projection s and P, Q may be transformed into
a real conic sx and two real points P19 Qx which are the real foci of sv

16. A conic passes through three real points A , B, C and the imaginary
double points of a given elliptic involution on a real straight line x. Show
how to construct at least two other real points on the conic (and therefore

any number of such points).

17. A conic touches three real lines a, 6, c and the imaginary double rays
of a given elliptic involution pencil of vertex 0. Show how to construct
the conic by tangents.

18. A conic passes through a real point A and the imaginary double
points of two given elliptic involutions on real lines n

9
v intersecting at 0.

Find the two tangents from 0 and their points of contact, and hence construct

the conic.

[Conjugate ranges on the common mates p, q of the involution pencils

through A incident with the given involutions have A for a self-corresponding
point and are perspective from 0. If X 9 Y are the mates of 0 in the given
involutions, X F is the polar of O and meets p, q at the points of contact P, Q
of tangents from 0 to the conic, since on OP there are at least two points,

namely 0 and (q9 OP) which are conjugate to P ; and similarly for Q.]

19. A conic touches a real line a and the imaginary double lines of twro
given elliptic involution pencils of vertices E7, V. Find the intersections of

UV with the conic and the tangents at these intersections.

Interpret your construction when the involution pencils are rectangular,

and state the theorem to which it leads.

20. Ay By Xy Y are four fixed points on a conic. Show that a point O
and a straight line c can be found in the plane of the conic such that, if U
is a variable point of the conic and IJA, UB meet c at P, Q respectively, then

0 [PQX Y} is equal to a given cross-ratio.

What does the above theorem become w hen X9 Y are the circular points ?

21. Show how to determine the conic which passes through a given point A
and touches a given conic k at its imaginary intersections with a given real

line Z.

22. If any tangent to a conic, whose centre is C, meets the orthoptic circle

at P and Q y show that CP, CQ lie along conjugate diameters.

23. Prove that the joins of pairs of corresponding points of two projective
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ranges on the same conic 1c envelop a second conic, having double contact

with k.

The sides AB, BC, CD of a simple quadrilateral ABCD inscribed in a given

conic pass respectively through fixed points J, K, L. Prove that, in general,

DA touches a second fixed conic ; but that, i£ J, K, L are collinear, then
DA passes through a fourth fixed point in the line JKL.

24. a and h are two tangents to a conic 8, x any line through their inter-

section, P and Q a pair of points on x, conjugate with respect to s. A conic

s' is drawn to pass through P and Q and the points of contact of the tangents
a and b. Prove that the tangents to s' at the other pair of common points of

8 and s' intersect at ah.

25. The tangents to a conic k at fixed points A , B meet at C and P, Q
are any two points of k. Prove that P(ABCQ)~7\Q(ABPC) ; and show that,

if P, Q move on k so that P{ABCQ}= const., the chord PQ is always tangent
to a certain fixed conic, which touches A: at A and B.

26. If (p, p') are a pair of mates in the involution of lines through a fixed

point O conjugate for a given conic k , and if p, p' meet a tangent t to the conic

at P, P\ then if P describes a fixed line Z, P' describes a conic having double
contact with lc.

[Project into the circular points the points of intersection of k with the
line through () conjugate to l

.

J

EXAMPLES IXb

[The axes of co-ordinates are rectangular throughout.]

1. A conic has x2+ y
2= 9 for its orthoptic circle. If the conic touches the

line x+ 2y=3 at the point (1, 1), construct its foci and axes.

2. A parabola touches the ir-axis at the origin 0, touches the line x— 1,

and has its axis parallel to the line x+2y=0. Find the point of contact
of the line x+ 2y— 2 with the conic c which touches this line and has four-point

contact with the parabola at 0. Construct the orthoptic circle of c.

3. A conic passes through the points (4, 5), (0, 1), (2, 2) and the pairs of
points (0, 0), (4, 0) ;

( — 1, 0), (2, 0) are conjugate with regard to it. Construct
two more points on the conic and the tangents at these points.

4. A conic passes through the point (2, 3) ; the following pairs of points

are conjugate with regard to it
: (

— 2, 0), (1, 0) ; (0, 0), (3, 0) ; (0, 0) (0, 2) ;

(0,1) (0,5).

Construct the tangents to this conic from the origin and their points of
contact.

5. A conic passes through the point (0, — 3) and has double contact with
the circle (x— l) 2

-f (y — 5)
2= 3 2 at the imaginary points where it is met

by the axis of x. Obtain four other real points on the conic.

6. The semi-axes of an ellipse are 4 cm. and 3 cm. respectively. With an
extremity of the major axis as centre and radius 5 cm. a circle is described.
Construct the two real common chords of the circle and ellipse.



CHAPTER X

HOMOGRAPHY

151. Homographic ranges. Let x be the distance of a point P
on a line u from a given origin 0 on the line. Let x' be the distance

of a point P' on another line u' from an origin O' on that line.

Let a correspondence be established between the ranges of such a

nature that to any point P (real or imaginary) corresponds one

point P' (real or imaginary) and one only, and conversely to every

point P' corresponds one point P and one only. And let the corre-

spondence be algebraic, that is, let the relation between P and Pf

be expressible by means of a rational integral algebraic equation

between x and x\ that is, an equation in which only sums of positive

powers or of products of positive powers of x and x' appear equated

to zero. No transcendental functions such as sin x
,
log x

}
e
x

,
etc.,

are to appear in the relation between x and x'.

Since for a given value of x there is one value of x' and one only,

the equation can involve only the first power of x
r

;
and since for a

given value of x' there is only one value of x, it can involve only the

first power of x.

It will therefore take the form

Axx' +Bx +Cx' + D = 0 (1)

Two ranges between which such a one-one correspondence exists

are said to be homographic.

Projective ranges are clearly homographic : for their correspond-

ence is one-one and the relation between the co-ordinates of a point

and of its projection on any plane is certainly algebraic and rational.

152. Homographic ranges are equi-anharmonic. The re-

lation (1) of Art. 151 leads to

,
Bx-\-D

x “ ” IxTc
*

Let xx, x2i x3, x4 be the x’b of four points Plf P2 ,
P3 ,

P4 on u
;
and

x
x

f

,
X3, x4 the x”a of the four corresponding points P/, P2

',

P», Pi-
rn
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Then {P1T2T3T4'} = P^Pt'.Pz'P,' Jx^’+xS) fo'-Sj,')

Pl'P4'.P3'P2' (*4'-X,') (*2'-a*Y

Now , , Bxo+D Bx,+D
2 1 ^x2 + C Axi+C

_(.AD-BC)
(x2 -Xi)

~(Ax2 +C) (Axi +C)

Hence fe
' ~ xi) (xi ~ *a) _ fas ~ «i) fa ~ %)

(V - xl) fa' ~ xz) fa - *l) fa - *3)’

the other factors all cancelling. Therefore

{Px'Pt'Pi’PA-frPiPM,

or in homographic ranges corresponding sets of four points have

the same cross-ratio.

It follows from the above that homographic ranges are projective.

For given two homographic ranges construct two projective ranges

having two corresponding triads the same as in the two homo-

graphic ranges. Then since both the projective and the homo-

graphic relation are equi-anharmonic, to any fourth point of one

range will correspond the same fourth point of the other, whether

projectively or homographically. The two given homographic

ranges are therefore projective ranges.

It follows that, if in two homographic ranges, the elements of

one pair correspond doubly, the same is true of all pairs of such

elements (see Art. 95) and the two homographic ranges form an

involution.

In this case equation (1) of Art. 151 must be symmetrical in x
,
x\

that is, of the form

Axx' +jB(x+x') +C=0.

If x
,
x' are the roots of the quadratic

a£2 +££+y =0,

then x+x* = -/3/a, xx
f

=y/a, so that the necessary and sufficient

condition that the above quadratic should determine a pair of mates

in the given involution is that a, ]8, y satisfy the linear equation

Ay -B/3 + Col=0.

Thus the quadratics whose coefficients satisfy a linear equation

define the pairs of mates in an involution.

153. Homographic flat pencils. If the rays of two flat pencils

are connected by a one-one correspondence such that, if m be any
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parameter in terms of which the co-ordinates of any ray of one

pencil can be expressed linearly (and, conversely, which is uniquely

determined when this ray is given), and if m' be a similar parameter

for the corresponding ray of the other pencil, then m and m' are

related by a rational algebraic equation linear in both parameters

and therefore of the form

Amm' + Bm + Cm' +Z)= 0,

the two flat pencils are said to be homographic.

Usually m, m' are the tangents of the angles made by the rays

with fixed lines in the planes of the pencils.

It is clear that the ranges in which two such pencils will cut

any transversals u, u' are likewise homographic. For the distances

x
,
x' of the points of section measured along u, v! are connected

with m, m' (and therefore with each other) by rational algebraic

relations ;
and also the correspondence between x, x' is seen to be

one-one.

Since these homographic ranges are equi-anharmonic and pro-

jective, the two homographic pencils which stand on these ranges

are also equi-anharmonic and projective.

Conversely projective pencils are homographic, since the corre-

spondence between the rays is one-one and the relation between

the co-ordinates of corresponding rays must clearly be both algebraic

and rational.

Here again, if the relation is symmetrical in m, m', and therefore

of the form

Amm' 4- B(m + m') +C = 0,

then every pair of elements correspond doubly, and the two homo-

graphic pencils form an involution pencil.

So far the term
“ homographic ” has been found to be synonymous

with
u
projective/’ We now pass on to cases where it enlarges the

notion of projective forms.

154. Homographic axial pencils. In like manner two axial

pencils whose planes correspond uniquely, while the co-ordinates

of corresponding planes are connected by an algebraic relation, are

said to be homographic.

The flat pencils in which two homographic axial pencils meet

any two given planes are themselves homographic and projective.

The ranges in which two homographic axial pencils are met

by any two given straight lines are homographic and projective.

14
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Note that we cannot use the term projective of homographic

axial pencils, since these are not plane forms and cannot therefore

be projected into one another.

Two homographic axial pencils are entirely determined by two

corresponding triads. For take two straight lines meeting the

axial pencils in projective ranges, two corresponding triads of planes

of the axial pencils determine on the lines two corresponding triads

of points of the ranges. These determine the relation between the

ranges and therefore the relation between the axial pencils.

Notice that if two homographic axial pencils have a common
axis they have two self-corresponding planes, which correspond

to the two self-corresponding points of the projective ranges in

which the axial pencils are cut by any straight line.

155. Involution axial pencil. We may now apply our definition

of involution (Art. 95) to an axial pencil. If we have two cobasal

axial pencils (the base, in this case, being the axis) which are

homographic, and such that one pair of corresponding planes corre-

spond doubly, then all pairs of corresponding planes correspond

doubly, and their aggregate constitutes an involution axial

pencil.

The properties of an involution of planes through an axis are

closely similar to those of an involution of coplanar rays through a

point. Such an involution determines corresponding involutions,

of points on any straight line which cuts it, of rays on any plane

which cuts it. By constructing the double elements of either of

these the double planes of the axial pencil may be found. As

before, if two involutions of planes have the same axis they have

one pair of common mates, which is always real unless the two

given involutions have two pairs of real double planes which are

separated by one another.

The relation between the dihedral angles of six planes in involution

is found by taking a section by a plane perpendicular to the axis.

The angles of the flat pencil so found measure the dihedral angles

of the axial pencil. These are therefore connected by the formulae

of Art. 102.

Also planes at right angles form an involution of which the double

planes pass through the circular points at infinity in the plane

perpendicular to the axis.

Precisely as is done in Art. 109 we can show that every

involution of planes through an axis has one pair of perpendicular

elements.
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156. Homographic unlike forms. If there be a one-one

algebraic correspondence between the rays of a flat pencil and the

points of a range, the two forms will still be spoken of as homo-

graphic.

Similarly a range and an axial pencil, or an axial pencil and a

flat pencil, may be homographic.

Clearly from two unlike homographic forms may be derived, by

projection or section, two like homographic forms.

A particular case of homographic unlike forms is furnished by

the principle of duality, the correspondence between any element

and its reciprocal being obviously one-one and algebraic.

Also what we have called incident forms are necessarily homo-

graphic. Thus a flat pencil is homographic with the range which

it determines on any straight line.

157. Homographic ranges and pencils of the second order.

If there be a one-one correspondence between the elements of

two forms of the second order (ranges or pencils) which is expressible

by an algebraic relation between the co-ordinates of the elements

the forms are said to be homographic. A form of the second

order may also be homographic with a form of the first order.

It is easy to show that if the forms of the second order are both

ranges, or both pencils, such homographic forms are projective

forms of the second order as defined in Art. 85.

For example, if we join two homographic ranges [Pi]2 ,
[P2]

2

to vertices 0, S lying on their respective bases, we obtain two

pencils related by a one-one algebraic correspondence. These

pencils are accordingly homographic and projective and the ranges

[Pi]2
,
[P2 ]

2 are projective.

Again, the pencil of the second order formed by the tangents

to a conic is homographic with the range of the second order formed

by their points of contact, since, by Chasles’ Theorem, the two are

equi-anharmonic

.

158. Geometrical evidence of homography. It may be

asked : when may we assert, from purely geometrical evidence,

that the correspondence between two forms is homographic ? For

if we had to have recourse to analysis every time in order to apply

the test whether the connecting relation is of the homographic type,

the labour of calculation would in many cases be considerable, and

the principle would be of little value in pure geometry.

We shall therefore suppose that our attention is to be confined
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to what are called algebraic curves or surfaces, that is, curves or

surfaces whose equations are rational and integral in the co-

ordinates. The conditions (a) that a point shall lie on such a

locus, (6) that a straight line or plane shall touch such an envelope,

are rational integral algebraic in the co-ordinates of the point, line,

or plane. Therefore if a correspondence be established by means

of the following processes
: (1) taking joins of points or meets of

planes, or planes through points and lines or meets of planes and

lines
; (2) finding intersections of algebraic curves or surfaces with

straight lines or with other algebraic curves or surfaces
; (3) drawing

tangent lines or planes to such algebraic curves or surfaces, or finding

points of contact of such tangent lines or planes (note that this

includes finding common tangents to two curves or surfaces and

also constructing polars) : at each step, provided we nowhere

introduce an arbitrary restriction on our choice of alternatives
,
an

algebraic condition is brought in, which is rational and integral.

In the process of elimination no radicals and no transcendental

functions can be introduced (for the complete eliminant of two

algebraic equations for any variable is known to be a rational

integral function of their coefficients). Hence the final relation

between the co-ordinates is algebraic and rational.

The above justifies the statements made in Arts. 151, 153 that

the co-ordinates of two corresponding points or lines of two

projective forms are connected by rational algebraic relations.

For clearly the processes of projection fall under the above

headings.

We may note in passing that the same type of reasoning will

show that any curve obtained from an algebraic curve by processes

of this kind is likewise an algebraic curve. Thus the projection

of an algebraic curve is an algebraic curve. In particular, the

circle being an algebraic curve (its equation referred to rectangular

axes through its centre being x2 + y
2 =r2

), the conic is also an

algebraic curve.

Next, as to being certain from geometrical evidence that the

correspondence is really one-one. It should be borne in mind

that the correspondence must be intrinsically, and not accidentally

,

one-one, that is, the fact of its being one-one must depend on the

intrinsic nature of the curves used, such as their degree or class,

and not on accidental characteristics, such as their position or shape.

In this way alone can we be sure that the correspondence is still

one-one when imaginary elements are taken into account, and
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without such assurance we cannot be sure that we are dealing with

a homography.

For example the relation

x = x
f*

is a one-one relation between x
,
x' so far as real values are concerned,

but it is not a homographic relation.

We may describe it geometrically thus :

Take a point P on the axis Ox whose co-ordinate is x. Draw
through P a parallel to Oy meeting the straight line y = x at P\.

Through Px
draw a parallel to Ox meeting the cubic curve y=x3

at P2 . Through P2 draw a parallel to Oy meeting Ox at P'. Pf

is the point corresponding to P.

Put in this form the reason why the correspondence is not

homographic is geometrically obvious. For although PiP2 meets

y=-x^ in only one real point, the curve being of the third degree

must be met by any straight line in three points. Thus there will

be three points P2 and therefore three points P' corresponding to

one point P, but two of these are imaginary.

Again, if a line AB of constant length moves with its extremities

on a fixed conic the pencils 0[A ], 0[B], where 0 is a fixed point

on the conic, are not homographic. For the given condition is

equivalent geometrically to stating that B is the intersection

with the conic of a circle of fixed radius and centre A. This circle

has four intersections with the conic, any one of which may be

taken for B. Therefore to one ray OA should correspond four rays

OB
,
and it is only by an arbitrary convention (to secure continuity of

sliding motion) that this number is reduced to unity.

If, however, the conic is a circle, the geometrical conditions that

the chord AB is of constant length, and the arc AB is always

measured in the same sense, may be expressed in another manner,

as follows. Let A\Bi be a given position of AB. Given any other

position of O^l, draw A
XQ parallel to OA to meet the circle again

at Q . Then OB is parallel to B
XQ. In this form the corres-

pondence is clearly one-one.

The above will give the reader some notion of the limits within

which the application of the principle of one-one correspondence

is valid, but rapidity and certainty in recognising these geometrically

will be best ensured by the consideration of examples.

159. Every curve of the second degree is a conic. For let

0, O' be two points on a curve of the second degree. Draw any

ray OP through 0 : it meets the curve at one other point P, since
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0 is already on the curve. Join O'P. Then if we start from OP,

O'P is uniquely determined. Conversely if we start from O'P,

since O' is already on the curve, O'P meets the curve again at one

point only, hence OP is uniquely determined. 0[P], 0'[P] are

therefore homographic pencils. Hence they are projective. There-

fore by Art. 41 the locus of P is a conic.

In like manner we can show that every plane curve of the second

class is a conic. For let t ,
t' be two tangents to the curve. On

t take any point T. Through T one other tangent p can be drawn

to the curve and one only, meeting t' at T'. T
,
T' are seen to

correspond uniquely. Hence [T], [T'] are homographic and

therefore projective : by Art. 42, TT envelops a conic.

160. Notation for homography. The symbol tc which was

introduced in Art. 24 for “ is projective with ” will now be extended

to homographic forms and be read “ is homographic with." This

notation will not contradict the previous, since projective forms

are homographic.

161. Homographic plane fields. The notion of homography

need not, however, be restricted to geometric forms of one dimen-

sion. In future, if a correspondence is established between the

points of two planes, which correspondence is not limited to

particular figures but embraces the aggregate of the points of the

planes, we shall speak of the elements of the planes, connected by

this relation,, as forming corresponding plane fields, in the same

way that the points of two straight lines may be arranged in

corresponding ranges. We have already had examples of such

fields
;

thus we have seen that space or plane perspective, for

instance, establish a relation which is not limited to selected points

and lines. In fact we have frequently used the term figure in the

sense here given to field, and it will often be convenient still to do

so, where no ambiguity is likely to result. A figure, however, is

only part of a field, and it is sometimes desirable to have distinct

words to denote them.

If two plane fields </>, </>' correspond point to point in such a

manner that the points of a straight line in
<f>

correspond to the

points of a straight line in
<f>'

the fields are said to be collinear, or

related by a collineation
(cf. Art. 3).

If, further, the correspondence between the points of
<f>
and </>'

is one-one and algebraic, the fields are said to be directly homo-
graphic, or, more briefly, homograpliic. The relation between
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them is then homography. As a special case, two homographic

fields may be in the same plane.

Let x
, y be the co-ordinates in the plane of ^ of a point P of

<f>.

Let x', y
' be the co-ordinates in the plane of

<f
>

' of the corresponding

point P' of
<f>'.

Then if the correspondence between x
, y and x\ y' is to be one-

one, x\ y', when solved for, must not involve radicals containing

x
, y ,

that is, they must be rational functions of x, y. Reducing

them to the same denominator we have

,
P Q

X
~R’ y =

R ^
where P, Q, R are polynomials in x

, y .

To the straight line

Vx' + m'y' + 1 =0

of the figure <j
>

' corresponds the locus

P Q
!

n - n
1 "

<
2>

of the figure </>.

This locus (2) is not a straight line unless P, Q, R either reduce

to expressions of the first degree in x
, y or else have a common

factor, such that when it is divided out of P, Q ,
P, the remaining

factor is of the first degree.

In either case equations (1) reduce to the form

fJ
AiX + B

Yy + Vj
,
A 2x + B2y + C2

A 3x+B3y + C3
* ^ A 3x + B3y + C3

and then the locus (2) becomes the straight line

V(A
x
x +B

xy + Ci) + m'(A2x + B2y + C2 )
+A 3x +B3y + C3 -0,

which being reduced to the form

lx +my + 1 =0,

gives

A xV+A2m'+A3 B
x
l +B2iti +P3

Z =
Ca
r+C2m'+C3

’

m =
C\l' +C2m’ + C3

(4)

showing that the line co-ordinates transform according to a similar

law.

The equations (3) can be written

(A 3x
f -A i)x + (B3x

f -Bx )y + (C3x
f - Cx ) =0,

(A 3
y' -A 2)x + (B3y‘ - B2)y + (C3y' - C2 )

=0.
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Solving these for x we find

(Ojsj -ggKgsg zJh)_z(W zgiKM " *»)

^ (^ 3z' -A x
)(B3y

r -B2 )
~(A 3

y' -A2)(B3x
' -l^)

(j?2C3 -53(72)z' + (fijCj -5A)/ + (5x02 - JSgCj) *)

~~
(A 2B3 -A3B2)x' + (A 3BX -A x

B3)y' + (-4A -A2BX )

and similarly > ... (5)

_
(C2A3 -C3A 2)x' + (C3A x

~~ (^\A 3)y
f

4- (O x
A 2 — C72A 1 )

y (A 2B3 -A 3B2)x' +(A 3Bx
- A

x
B3)y

' + (A XB2
-A2BX ) ^

Equations (5) show that the transformation from x,y to a/, y' is

of the same type as the transformation from y' to x
, y. We

deduce that to a straight line of cf> corresponds a straight line of

fa, and one only, which can be otherwise established by solving

back equations (4) for V, m'.

It is clear from the definition that corresponding ranges and

corresponding pencils in two homographic fields are themselves

homographic.

162. A plane homography is determined by two corresponding

tetrads. Let A
X
B

X
C

X
D

X ,
A 2B2C2D2 be two tetrads or sets of four

points in the plane fields fa, (f>2 . These tetrads may be arbitrarily

given, with the one restriction that no three points in either tetrad

are to be collinear. Then a homographic correspondence can be

established between
(f> x

and
<f>2 as follows.

Let P
x
be any point of fa. Draw through A 2 a ray A 2P2 such

that

A 2{B2C2D2P2}~A X
{B

XCXDXPX} (1)

There is only one such ray by Art. 25.

Also draw through B2 a ray B2P2 such that

B2{A 2C2D2P2}
=B

l
{A

1
G\D

l
Pj} (2)

P2 ,
being the intersection of A 2p* B2P2) is determined uniquely

when P
x

is given, and conversely. This construction then

establishes between fa and fa a one-one point to point correspond-

ence, which is easily verified to be algebraic.

To prove that it is a homography we have to show that if P
x

describes a straight line, P2 describes another straight line.

Now from (1) and (2) above

AjpaxAm,
A 2B2 corresponding to A XBX ,

and

B2[P2]-*B1[Pli
B2A 2 corresponding to B

XA X .
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Now if Pi describes a straight line, PJPj] are perspective,

A\Bi being self-corresponding. Hence

and A2B2 is self-corresponding : that is, A 2[P^\, B^P^\ are

perspective and P2 describes a straight line. The given construction

therefore determines a homography.

Also it is the only homography in which A lf Blf Clf Dx correspond

to A 2 ,
B2 , C2 ,

D2 respectively. For if Pl9 P2 be corresponding

points in any other homography satisfying the given conditions,

Pi, P2 must satisfy the relations

A^CzDJP^-AABiC^P,} (3)

52{J 2C2Z)2P2
'}=£

1{^ 1
C

1
Z)

1
P

1} (4)

since in a homography corresponding pencils are projective.

Comparing (3) and (4) with (1) and (2) we see that P2 =P2 .

The construction cannot fail unless two of the rays of one of the

pencils Ai(BxCiDi), A2(B2C2D2 ), Bx(AiC\Di), B2(A2C2D2 )
coincide,

that is, unless three of the points of either tetrad are in one straight

line. In this case no homography can exist unless the three

corresponding points are also in a straight line. But then the

homography is no longer completely determined. For if A X ,
Bh Ci

be points on a straight line px
and A2 ,

B2 ,
C2 the corresponding

points on a straight line p2 ,
the triads A 2B2C2 determine

completely the corresponding points of p i9 p2 . If now a fourth

point Dx be given corresponding to a fourth point D2 and P
x
be

any fifth point to wThich P2 corresponds, the point in which D2P2

meets p2 corresponds to the point in which D\P\ meets p x
and is

known. Therefore D2P2 is known, but the position of P2 on it is

indeterminate.

In like manner it may be shown that a homography is determined

whenJour lines of one field, no three of which are concurrent, are

made to correspond to four lines of the other field, no three of which

are concurrent.

163. Vanishing lines. The equations of the vanishing lines

of the homography are easily written down from equations (3)

and (5) of Art. 161. For if x', y' are to be infinite we must have

A 3x +B3y +C3 =0.

This then is the vanishing line of the field
<f>.

If x, y are to be

infinite, then

(A 2B3 -A3B2)x' + {A 3Bx
-A

x
B3)y

' +A
X
B2 ~A 2BX =0,

and this gives the vanishing line of the field
<f>'.
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164. Any four coplanar points can be projected into any

four coplanar points. Let Ay, By, C
3 ,
Dy be four points, no three

of which lie in a straight line, in a plane a
3 ;

and A 2 ,
B2 ,

C2 ,
D2 be

four points, no three of which lie in a straight line, in a plane a2 .

Through Ay draw a plane a3 not coincident with a
x

. Project

A 2i B2 ,
C2 ,

D2 on to oc3 from a point S on AiA 2 other than A 2 .

Let the projected points be Ay, B3 ,
C3 ,

D3 .

Let (M, C\Dy) =Ey
;
(AyB3 , C3D3 )

=ES .

Because the straight lines AyByEy, AyB3E3 intersect, By, B3 ,

Ey
,
E3 are coplanar. Therefore B

}
B3 ,

EyE3 meet at a point U .

Through the line AyByEy draw a plane a4 not coincident with ony.

Let the projections of Ay, B3 ,
C3 ,

D3 ,
E3 from U on to a4 be Ay,

By, C\, D4 ,
Ey.

The points C4 ,

D

4 ,
Ey are collinear, since C3 ,

D3 ,
E3 are collinear.

Hence the lines CyDyEy, CyDyEy are coplanar. CyC4 ,
DyD4

meet at some point V.

Projecting AyB
x
C4D4 from V on to aj we obtain AyByCyDy.

Thus we may pass from A 2 ,
B2 ,

C2 ,
D2 to Ay, By, C\, Dy by three

projections.

It has been assumed that the line A
}
A 2 does not lie in a2 ;

unless

the two quadrangles are coplanar, we can always find at least two

pairs of which this is true, and one of these may be denoted by

Ay, A 2 . If however AyByCyDy and A 2B2C2D2 are coplanar,

let one of them be first projected from any vertex on to another

plane, and We have the case already dealt with. Four projections

then enable us to pass from A 2 ,
B2 ,

C2 ,
D2 to Ay, By, C\, Dy.

Similarly any four coplanar lines nq, by, c
x ,

dy, no three of which

pass through a point, can always be projected into any four coplanar

lines a2 ,
b2 ,

c2 ,
d2 ,

no three of which pass through a point. For

in this case the four points ciyby, byCy, Cydy, dy(iy are distinct and

no three of them are collinear, and the same holds of the four

points a2b2 ,
b2c2 ,

c2d2 ,
d2a2 . These two sets of four points are

therefore projective by the first part of the present article, and the

lines which join them are likewise projective which proves the

proposition.

165. Every plane homography is a projective transformation

and conversely. For consider any plane homography. Take two

corresponding tetrads such that no three points of each are collinear,

and construct a projective transformation in which these are corre-

sponding tetrads. Since both homography and projection preserve
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cross-ratio constant, the construction given in Art. 162 for finding

the point P2 corresponding to any given point P
x
applies to both

the projective and homographic transformations. These two

transformations therefore determine the same correspondence

between the two fields, or any corresponding figures which are part

of them, that is, the given homography is identical with the

projective transformation.

Conversely every projective transformation is homographic,

for it is a one-one algebraic transformation in which points corre-

spond to points and straight lines to straight lines.

It follows from Art. 162 that two corresponding tetrads of points

or lines entirely determine the projective correspondence between

two planes.

Two coplanar projective fields with four self-corresponding

points, of which no three are collinear, or with four self-corre-

sponding lines, of which no three are concurrent, must therefore

be identical.

166. Deductions from the above, ff we are given three points

A
x ,
B

t ,
C

x
on a conic s x and three points A 2 ,

B2 ,
C2 on a conic s2

the conic s
x
can always be projected into the conic s2 and at the

same time the three points A 1} Bh C\ into the three points A 2>

B29 C2 .

For draw the tangents to Sj at A
x ,
B

x
meeting at D

x
and the

tangents to s2 at A 2 ,
B2 meeting at D2 . Project the four points

A U BU Ci, d[ into the four points A 2 ,
B2 ,

C2 ,
D2 . Then s

}
projects

into a conic which touches D2A 2 at A 2 ,
D2B2 at B2 and passes

through C2 . But this conic must be s2 for two pairs of coincident

points and another point determine a conic uniquely.

In like manner if a j, b
x ,

c
x
be three tangents to a conic s

x ;
a2 ,

b2 ,
c2 -three tangents to a conic s2 ,

let d
x
be the chord of contact

of a
x bi, d2 the chord of contact of a2b2 . Project ajh^di into

a 2b2c2d2 . Then s
x
projects into a conic touching a2 at a^d2 ,

b2

at M2 and also touching c2 . And this conic can be none other

than s2 .

These two results show that two ranges or pencils of the second

order can always be actually projected into one another so that

any two given triads correspond. Equi-anharmonic ranges of the

second order are therefore actually projective, which justifies the

name given to them in Chapter VI.

Notice that the projective correspondence between two given

ranges of the second order, or two given pencils of the second order,



202 PROJECTIVE GEOMETRY

determines entirely the projective relation between the two plane

fields to which they belong.

167. Self-corresponding elements of two coplanar projective

fields. Consider two coplanar projective fields <£, <f>\
Let 0

be any point of the plane which is not self-corresponding. To 0
considered as a point of

<f>

f

let 0\ correspond in
<f> ;

to 0 considered

as a point of
<f>

let 02 correspond in <j
>'

.

Let p, p' be any pair of corresponding lines of cf>,
<j>' through

Oh 0 respectively
;

then [p]7C [p'] and pp' describes a conic u

passing through Oi9 0. This conic passes through every self-

corresponding point P of (/>, (/>', since Ox
P of cf> corresponds to OP

of
<f>'.

Similarly if q,
q' be corresponding lines through 0, 02 ,

qq' describes

a conic v passing through 0, 02 and through every self-corresponding

point of <j), cf>'.

Hence all self-corresponding points must be intersections of

u, v
;

conversely every intersection of w, v other than 0 is a self-

corresponding point. For, if P be such an intersection, then

0
X
P, OP of

(f>
correspond to OP

,
02P of </>' respectively. Their

intersections must also correspond, but both are identical with P,

which must therefore be self-corresponding.

Since the conics u
,
v already intersect at 0, they have, in general,

three other intersections P, Q, R, which are the three self-corre-

sponding points of
<f), ft

.

Similarly, by considering a line x, which is not self-corresponding,

and its two correspondents x
x ,
x2i we can prove that there are, in

genera], three self-corresponding lines p , q ,
r, which are the three

common tangents other than x to the conic envelopes s
,

t of joins

of corresponding points on xlf x and on x, x2} respectively. These

are evidently the lines QR
,
PP, PQ joining the self-corresponding

points P, Q ,
P.

If the relation between <£, ft is real, so that to real points and

lines correspond real points and lines respectively, the conics u
}

v
,
5

,
t are all real, and since one intersection 0 of u and v is real, a

second intersection (say P) is always real, the other two, Q and P,

being either real or conjugate imaginary. In like manner .9, t

have always one real common tangent besides x. Thus must

be QR,
the other two, PQ and PP, being either real or conjugate

imaginary.

In general on a self-corresponding line p there are only two

self-corresponding points Q, P, the self-corresponding points of
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the projective ranges formed by corresponding points on p. If

however a third self-corresponding point on p exists, then every

point of p is self-corresponding and corresponding lines must meet

on p. We have then the case of fields in plane perspective, p
is the axis of perspective and the self-corresponding point P not

on p is the pole of perspective.

In this case OO
x
(or OP) is self-corresponding, so that u becomes

the line-pair (OP, p) and v coincides with the same line-pair. The

only self-corresponding points on OP, however, are P and the inter-

section of OP with the axis of perspective p ;
these may coincide

as a special case.

168. Harmonic perspective. If in a plane perspective in which

0 is the pole and x the axis of perspective, a given pair of corre-

sponding points A
,
A' are harmonically divided by 0 and x, the

same holds of every other pair of corresponding points.

Denote the field to which A belongs by
<f)
and that to which A'

belongs by </)'. Let P be any other point of the field <j>. Join AP
meeting x at V

;
then VA' meets OP (see Art. 16) at the point P'

of (/>' corresponding to P of
<f>.

If OP, OA meet x at X, B respectively, then by hypothesis

{OABA '}= -1
;
but OABA

'

and OPXP ' are in perspective from

F. Hence {OABA'}={OPXP'} so that {OPXP'} = -1, that is,

P, P' are harmonically divided by 0 and x.

Such a plane perspective is termed harmonic perspective.

169. Involutory plane field. It is clear that, if in a harmonic

perspective P' is taken at P, then P is at P'. Thus every pair of

corresponding points correspond doubly
;
and it is then obvious

that every pair of corresponding lines correspond doubly. The

two plane fields are then involutory.

Conversely we will now prove that there can be no involutory

plane homography other than harmonic perspective.

For if, in a homography, a pair of points A, A' correspond doubly,

then AA' corresponds to A'

A

and so is a self-corresponding line x .

All pairs of corresponding points on x then correspond doubly and

form an involution, of which the double points 0, U are self-

corresponding points. But this may happen without any pair of

points not lying in x corresponding doubly, that is, without the

homography being generally involutory. If, however, a second

pair of points B
,
B' lying in another straight line y also correspond

doubly, then y is another self-corresponding line, on which pairs of



204 PROJECTIVE GEOMETRY

corresponding points form an involution. Further y must meet

a; at a self-corresponding point. This is either 0 or U
;

denote

it by 0. Let V be the other double point of the involution on y ;

F is a third self-corresponding point.

Let now p, p' be any pair of corresponding lines meeting x at

P, P', y at Q ,
Q'. Since x is self-corresponding, P and P' are

corresponding points, and so are Q ,
Q'. Hence by the property

of the involutions on x and y ,
{OPUP'} = -1 ={'OQVQ'}. Since 0

is a self-corresponding point of these ranges, PQ, P'Q UV are

concurrent, that is, any two corresponding lines p ,
p' meet on UV.

The homography is therefore a plane perspective with UV as axis.

The point 0 where AA' and BB' meet is then the pole of

perspective. And since P, P' are harmonically divided by 0 and

x, the same is true, by Art. 1G8, of any other pair of corresponding

points, and the perspective is a harmonic perspective.

EXAMPLES Xa

1. The angles 0,
9' which two lines through a fixed origin make with an

initial line are connected by the equation

A9+B
e
'-Cti + D'

Explain carefully why the two lines do not describe homographic pencils.

2. If the angles 9,
6' in the last question be connected by the relation

A sin 9 + B
8in 6 = 0 sin0+7>’

show that the lines do not describe homographic pencils.

3. Through the vertex of a flat pencil planes are drawn perpendicular

to the rays of the pencil. Show that the axial pencil so formed is homographic

with the given flat pencil.

4. A variable circle cuts a fixed circle at a constant angle a and passes

through a fixed point (). If the points of intersection of this circle with the

fixed circle be P, P', show that the ranges [P] 2
,
[P'] 2 are homographic, the

angle a being measured by the rotation, in a prescribed sense, which brings

the tangent to the variable circle upon the tangent to the fixed circle.

5. The co-ordinates of two points on a straight line are connected by the

relation

a b c

x+ x'~f *

Show that the points describe homographic ranges.

6. A variable conic through four fixed points, two of which lie on a fixed

conic 5, meets s again at P, P'. 0 is a fixed point on s. Prove that OP, OP
describe homographic pencils.

7. A variable conic through four points A, B, C, D meets fixed lines

through A and B at P and Q. Show that P, Q describe homographic ranges.
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8. If in a homographic relation the points (0, 0), (0, 1), (1, 0), (1, 1) in

the plane of (#, y) correspond respectively to the points (0, 0), (1, 3), (2, 2),

(2, 4) in the plane of {x\ y'), show that the point (0, 2) in the plane of (a?, y)
corresponds to the point (-£, 4) in the plane of (x\ y').

9. In a homography the points of a quadrangle ABCD correspond with
themselves in the order BCDA. Prove that one of the diagonal points of

the quadrangle is a self-corresponding point and the opposite side of the

diagonal triangle is a self-corresponding line.

Show further that the other self-corresponding points are always imaginary.

10. Two homographic coplanar figures have the circular lines through O
as self-corresponding lines. Show that one of the figures can be brought
into plane perspective with the other by a suitable rotation in its own plane

about O.

11. Prove that, if the circular points at infinity are self-corresponding points

of a homography, corresponding figures in the homographic fields are directly

similar, but not similarly situated.

Show further that these are the only homographies in which every circle

in the plane transforms into a circle.

12. Given the three self-corresponding points of two projective coplanar

figures and a pair of corresponding points, give a construction for the point

corresponding to any given point, and also for the vanishing linos.

13. Given three pairs of corresponding points of two hoinograpliic plane

figures and one of the self-corresponding lines, construct the intersection

of the other two self-corresponding lines.

14. Show how to set up a one-one correspondence of a plane into itself

such that a circle in the plane is transformed into itself and three assigned

points P, Q , R of it into Q, R, P respectively.

Discuss the transformation when Q and R arc the circular points at infinity.

15. In two homographic plane figures the lines at infinity correspond :

show that the areas of corresponding figures are in a constant ratio.

Deduce that the area of the segment cut off from a parabola by any chord

is two-thirds of the area of the triangle formed by the chord and the tangents

at its extremities.

1(>. In two homographic fields (which need not be coplanar), three pairs

of corresponding points are given not lying on one pair of corresponding lines,

and also one pair of corresponding lines, not incident with any of the given

points. Prove that the homography is completely determined, and show
how to construct the line of either figure corresponding to a given line of

the other.

17. Prove that, in harmonic perspective, any conic with regard to which
the pole and axis of perspective are pole and polar transforms into itself.

18. Prove that pairs of corresponding points in a harmonic perspective

which are also conjugate for a conic s which is self-corresponding lie on a
second conic which has double contact with s .

19. In a harmonic perspective it is given that two conics transform into

themselves. Show that there are three possible positions of the pole and
axis of perspective and give a method for constructing them.
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EXAMPLES Xb

1. OUV is the self-corresponding triangle of two coplanar homographic
fields <j>, <f>' ; U V— 5 inches, OU~ 3 inches, O V== 4 inches. On two lines OX,
OF, making angles of 30° with OU, points A, A', respectively, are taken
such that OA—OA f— 2 inches, A being inside the triangle OUV.

If A, A' are corresponding points of
<f>,

</>', construct (i) the point of </>'

corresponding to the middle point of A V in
<f>

;

(ii) the point of
<f>'

corre-

sponding to A' of <j> ;
(iii) the vanishing lines of </> and <f>'.

Verify that the last two intersect at the middle point of UV.

2. ABCD is a plane convex quadrilateral: AB— 3 inches, AD=DB— 4
inches, BC—GD ~2-5 inches. On AB as side, and on the opposite side to

GJ) , a square ABC'D

'

is described, the comers A , D' being adjacent.

Obtain the third self-corresponding point of the homography in which
A, B, C, D correspond to ABC'D' respectively.

3. Two liomograpliic fields
<f>,

<j>' are referred to rectangular axes Ox, Oy
and O'x', O'y' respectively.

The axis of x corresponds to the axis of x' and the points (1, 1) (2, 3), (4, — 1

)

of
<f>
correspond to (0, 2) (4, 1) (3,-2) of <£'.

Construct (i) the line of </>' corresponding to x+ y— 0 of <£, (ii) the vanishing
line of <j), (iii) the jioints of <£, </>' corresponding to (0, 0) in the other field.

4. ABCD is a quadrilateral inscribed in a circle of radius 2 inches, the
successive arcs AB, BC, CD subtending angles at the centre of 75°, 60°,

135° respectively. A'B'C'D' is a rectangle with A'B'~ 1 inch, B'C'— 2 inches.

A, B, C, D correspond to A', B', C', D' in two liomograpliic fields <j>, <j>'.

Construct, in their own figures, (i) the vanishing line of <^, (ii) the vanishing

line of (/>', (iii) the point of </>' which corresponds to the centre of the circle in <£.

5. In a harmonic perspective the pairs of points (2, 3), (
— 1, 4) ; (3, 1),

(
— 2, —2) are corresponding pairs. Construct the pole and axis of perspective,

the co-ordinates being rectangular.



CHAPTER XI

RECIPROCATION AND INVERSION

170. Reciprocal transformation or correlation. If in the

equations (3), (4) and (5) of Art. 161 we interchange l\ m' and

x\ y' we find, writing for shortness

a i
—B2C% — B%C2i a2 ~B^Ci - -S

1
C3 ,

a3 —BiC2 — B2Ci ,

with corresponding meanings for /J’s and y’s :

y
A

l
x+B

l
y+Cl

A 3x+B3y+C3
’

,
A2x+B2y+C2m

~

A

3x +B3y + C3
’

A
x
x' +A2y’ +A 3

C
1
x'+C2y'+C3 ’

B]X' +B2y' +B3m ~C
l
x'+C2y'+C3

a
x
Z' +0C2wi' +0C3

/3j
V + f32m,' + /?}

y\l' +Yim' +y3
’ ^ y\l' +y2m' +y 3

’

,
ai l +^m+yi
a3l+fi3m+y3

’

,
x2l+fi2m+y2

y
x.3l +p3m+y3

‘

These equations may be shown as in Art. 161 to be the necessary

equations of transformation in any one-one algebraic correspondence

of plane fields in which lines correspond to points and points to

lines. Clearly any pencil is homographic, and therefore equi-

anharmonic, with the corresponding range. This transformation

is therefore of the type discussed in Art. 56.

It is, however, much more general than this transformation

;

for the transformation by reciprocal polars is limited to fields in

the same plane, whereas the present transformation is for any plane

fields. Also in the transformation by reciprocal polars the same

line p corresponds to the same point P whether P be considered

as belonging to one field or to the other. Whereas here, if the fields

be taken coplanar and the axes of co-ordinates identical, if we put

x' =#, y' =y we do not in general obtain V = Z or m' =m.
The present transformation is the most general case of a plane

reciprocal transformation.

An obvious modification of the reasoning of Art. 162 will show that

15 207
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such a transformation is determined when four points A 1} Blf

Ci, Dx of one field, no three of which are collinear, are made to

correspond to four lines a2 ,
b2 ,

c2 ,
d2 of the other field, no three

of which are concurrent.

For if Pi correspond to p2 we have

Ai{BiC\DiPj} =a2{62c2rf2p2},

Bi{AiCiDy
Pj}

= &2{a2c2^2?2}>

which determine a2p2 and b2p2 ,
and therefore p2 .

And it is easy to show that if Px describes a straight line, p2

passes through a point.

Two such fields will be said to be reciprocal or correlative. The
relation between them may be spoken of as a reciprocity or a

correlation.

171. Two reciprocal transformations are equivalent to a

projective transformation. Consider two reciprocal plane fields

<j>i, <f>2 ,
and a third field </>3 reciprocal with </>2 . <j>

\

and </>3 now
correspond point by point and line by line and since the corre-

spondence between elements of and
(f>2 is one-one and algebraic,

and that between elements of <j>2 and </>3 is one-one and algebraic,

the correspondence between elements of <£ x
and <£3 is also one-one

and algebraic.

Accordingly the fields
<f>i

and </>3 are homographic and therefore

projective.

172. Any reciprocal transformation is equivalent to a
projective transformation and a transformation by reciprocal

polars. For let
(f>i

and </>2 be given reciprocal fields. Let
<f>z

be the reciprocal polar field of cf>2 with regard to any conic in its

own plane. Then by the last Article
<f>i

and </>3 are projective. Thus
a projective transformation transforms

<f> x
to ^3 and the transforma-

tion by reciprocal polars transforms cf>2 to
<f
>2 .

173. Locus of incident points and envelope of incident

lines of two copianar reciprocal fields. If two reciprocal

fields
<f> ,

</>' be copianar, we proceed to find the condition that a
point and its corresponding line shall be incident.

If P be a point on its corresponding line p>, P being considered

as belonging to
<f> ,

it also lies on its corresponding line when con-

sidered as belonging to
<f>'.

For let P^Q'. Then, since P, i.e.

Q lies on p', q passes through P, i.e. through Q\ But it should

be noted that q is, in general, distinct from p\
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In like manner, if a line p = q' passes through P' it also passes

through Q, but P', Q are, in general, distinct.

Such points and lines will be called incident points and lines of

the correlation.

Consider now an incident point A of
<f>,

assuming for the moment
that such exist. Let a' be its corresponding line which is then

an incident line, and on a' take any point B distinct from A. If

B is incident, b' passes through B
,
and, since A is distinct from B ,

a

•

must be distinct from b', otherwise the correspondence would

not be one-one.

But AB
,
which is identical with a', corresponds to a'b' in

<f>\

which is identical with B. If then there were two such points

B on a', incident and distinct from A
,
they would correspond

to the same line a' in </>, which is not possible. Thus there can

only be two points on a' which are incident, namely A and one

point B, so that it is impossible for an incident line to contain

more than two incident points. Thus all the points of the plane

cannot be incident points, nor all the lines incident lines.

Let now l be any line whatever, P any point of it, p' the line

corresponding in <£' to P, P' the meet of l and //. If to P' in
(f
>

'

corresponds p in <£, then since P' lies on p', p passes through P.

Each of the points P, P' is thus uniquely determined as soon as

the other is known. The ranges [PJ, [P'| are therefore homo-

graphic and have in general two self-corresponding points S
,
T

,

which may be real coincident or imaginary, and which are such

that they lie on their corresponding lines and so are incident

points.

The locus kx
of incident points has thus two intersections with

any straight line in the plane. Hence it is a conic by Art. 159.

In like manner through any point M two incident lines can be

drawn. The envelope of incident lines is therefore a conic k2 -

The conics kx ,
k2 correspond doubly in the correlation, since a

tangent to k2 ,
being an incident line, corresponds in either field

to an incident point, which lies on kx .

The double character of this correspondence does not, however,

extend to the individual elements of the conics.

A point P = Q' (Fig. 54) of k
x
corresponds, in general, to two

different incident lines p\ q, which are the two tangents from

the point to k2 . The tangent t to ki at P^Q' corresponds to

the point T' of
<f>'

where p’ touches k2 ; and to it corresponds in

<f>
the point V where q touches k2 *
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In like manner a tangent p=^q
r

to k2 corresponds, in general, to

two different incident points P', Q, which are the intersections of

this tangent with kx . The point of contact T = U' of p~qr

with

k2 corresponds to the line t! of cf>' which touches kx at P'
;
and

to it corresponds in
<f>
the tangent u to k

x
at Q. It should be noticed

that we can here use the same letters without confusion, because

p has no necessary relation to p' or T to T\ the corresponding

elements being p, P'
;
P, p'

;
T, t*

; t, T\
If P=*Q' comes into coincidence with an intersection A of kx ,

k2 ,

the lines p\ q coincide with the tangent x2 to k2 at X ;
thus X

corresponds doubly to x2 . But, further, T and U then both coin-

cide with X, and they correspond to the tangent x x
to k

x
at

P = (/ ;
thus Ar

corresponds doubly to x
x . Since the same

point cannot correspond to two distinct lines, xx must be identical

with x2) and the conics kx ,
k2 touch at any intersection A.

Thus kx ,
k2 either touch at two points A, Y

,
or else have four-

point contact at a point A.

As a special case kx
may break up into a line-pair, in which case

k2 breaks up into a point-pair. Neither the points of the pair nor

the lines of the pair can be incident points or lines, so the point-pair

cannot he upon the line-pair. Each point of k2 corresponds to the

two components of kXi one in each field.

If the given correlation reduces to a transformation by reciprocal

polars, the two conics kx , k2 coincide with the base conic, since every

point of the base conic lies on its polar and every tangent of this
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conic passes through its pole. By analogy the conics ij, h2 will

be termed the base conics in the general case.

174. Correspondence of points and tangents on the base

COniCS. In Fig. 54 it is clear that some rule of selection must be

given, which enables us to discriminate which end of a chord of

hi tangent to h2 is to be treated as P' and which as Q . For the

correspondence is not here a double one ;
thus in Fig. 54 two such

chords are p' and q, their intersection being P = Q'. If their other

extremities are R', V, it is clear that R ' belongs to _p'=r and V
to q = v\ Thus if, in this relation, P corresponds to R\ the same

point, treated as Q' does not correspond to R' but to a different

point V.

Since, in the correlation, homographic ranges and pencils of

the second order correspond to homographic pencils and ranges

respectively, we have at once

[P'f-K[pf s [q']*nQ]
2

,

so that the ranges [P']2 and [Q]
2 are homographic ranges of the

second order on the conic h
x

. They are not, however, in involution.

But, if P f

approaches X
,
P'Q approaches the tangent at X

and Q approaches X. Hence X is a self-corresponding point of

the ranges [P']2
,

['Q]
2

,
and so is Y. Thus the common chord

XY of contact of h
x ,

k2 is the cross axis of these ranges (Art. 86),

and cross-joins such as QR', P'P meet at a point L of XY.
The above will still apply if the base conics have four-point

contact at X
,
since the cross-axis of the ranges is still determinate,

being the common tangent at X.

This shows that, once the discrimination has been effected in

the case of a single pair of points on hi, the process of selection is

determinate, for, by varying L and keeping P, R' fixed, we can

make P', Q represent any required pair of corresponding points

and identify the field to which each belongs. Once the points

have been identified, the tangents are also identified without

ambiguity.

In the first instance, however, we have nothing to guide us in

the identification of the original pair of points. But a little

consideration will readily show that the choice is really

immaterial. For it amounts to interchanging the fields
(f>
and

<f>'

consistently throughout. This does not affect the base conics

since they correspond doubly. The correlation remains the same,

the notation only being altered.
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175. A correlation is uniquely determined by the base conics.

Suppose the base conies k
Y ,

k2 of a correlation are given, and also

the selection rule of Art. 174. This fixes the order of the extremities

of two chords such as P'Q
, R'S (Fig. 55), with the proviso that, if

one pair be interchanged, so also must the other pair. Let A =£'

be any point of the plane and let the two tangents from this

point to k2 be p^q', r=s', meeting k
Y

at P', Q ;
R', S

,

respectively.

Now, in
(f>,
A =jor and corresponds to P'R' = a' in cf>'. Similarly

B' ~q'
s'

in <(>' and corresponds to QS = b in
<f>.

We have thus the

two lines which correspond to A = B' when treated as a point of

either field.

Again, let a =6' be any given line, meeting at P = Q' and

R*=* S' (Fig. 55). From these latter points draw tangents p', q

and /, s to k2 ,
the identification following the selection rule.

Then pY=A\ qs^B, so that we have constructed the two

points corresponding to the line a=b', treated as a line of either

field.

Thus the base conics, together with the selection rule, fix the

correlation completely and uniquely.

Further, reversal of the selection rule interchanges P' and Q,

R' and S,
a

'

and b, A' and B. This simply amounts to interchanging
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<f>
and

<f>\
as pointed out in the last Article. Thus the correlation

is really determined by the base conics alone.

It is to be noted that, although the constructions here given fix

the correlation theoretically, as drawing-board methods they are

of limited application, since, in general, imaginary elements may
enter into them.

The above argument has assumed that the conics k
x and k2 were

already known to be the base conics of a correlation. If, however,

ki and k2 are two conics having either double or four-point contact

and arbitrarily given, we may still, provided we definitely allot

one of the extremities of a chord of k
x
tangent to k2 to each the

two fields in one particular case and so fix the homographic ranges

on kXi apply the above construction to find the line corresponding

to any given point of the plane. In order to show that we then

obtain a correlation, it is necessary and sufficient to prove that, if

a point A describes a straight line l, its corresponding line a ' passes

through a fixed point L'.

In such a case the tangents p=q', r=s' (Fig. 55) form an in-

volution of tangents to k2 ,
of which l is the axis. Since there is a

unique correspondence between p and P', r and I?', the ranges

[P']2
,

[P'] 2 are homographic
;

moreover, if P' is taken at R\

p and r are interchanged and R' is at P'. Thus P' and R' correspond

doubly and so are mates in an involution on k
x

. Hence P'R' = a'

passes through a fixed point L\ which corresponds in
<f>'

to l

in </>. Similarly QS=b passes through a fixed point which corre-

sponds in
<f>

to l in </>'. Thus the points of a line correspond

to the lines through a point and the relation between the fields is

a correlation.

If now the point A lies on a', it must coincide with either P'

or R' and so lie on k
x ;

thus kx
is the locus of incident points of the

correlation. Similarly if a contains A', it must coincide with either

p
f

or r' and so be a tangent to k2 ;
thus k2 is the envelope of incident

lines of the correlation.

No distinction need be drawn between the cases where the

points of contact of k
x ,

k2 are separate or coincident. Thus any

two conics having either double or four-point contact determine a

unique correlation, provided that (1) we assign which is the

incident locus kx and which the incident envelope k2 ; (2) we

assign the intersections with k
x

of one tangent to k2 each to its

proper field. By varying the above assignments we obtain four

possible correlations from two given conics.
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Examples

1. Show that, in the case where Jcv Jc2 degenerate into a line-pair and
point-pair respectively, the join of the point-pair passes through the meet
of the line-pair, and the points of contact X , Y of the general case coincide

at this point.

2. Give a construction for the line and point corresponding to a given
point and line, when the base conics are a line-pair and point-pair.

176. The self-corresponding triangle. Fig. 55 gives us at

once the condition that a point A^B' shall have the same corre-

sponding line in the two fields. For if a' =5, then P' = Q and
R' ~S and the lines p = q', r=s' are tangents to k

x
. But they are

also tangents to k2 and so are common tangents to the base conics.

There are only two such tangents, namely, those at X
,
Y (Fig. 54).

Moreover, if P' approaches X
,
P'Q or p = q' approaches the

tangent atX . So that the tangent at X is the line corresponding to

X in either field. Similarly the tangent at Y is the line corres-

ponding to Y in either field. Calling these tangents x
, y, and

denoting XY by z, and its pole with regard to either k
Y
or k2 by

Z, we have X
,
Y

,
Z corresponding to x

, y, z in either field. Thus
the triangle XYZ corresponds to itself. It should, however, be

noted that only one vertex, namely Z, corresponds to the opposite

side, the others being incident with their corresponding lines.

177. Reciprocation with respect to a circle. We have already

dealt with polar reciprocal figures in Art. 56. There is, how-
ever, one special case of polar reciprocation with respect to a

conic which is particularly important from the point of view of

obtaining what are known as metrical properties, that is relations

between magnitudes of lengths and angles, especially the latter.

This special case arises when the base conic is a circle.

The centre 0 of the circle with respect to which reciprocal polars

are taken is called the origin of reciprocation and its radius the

radius of reciprocation.

Any point P then corresponds to its polar p
f

with respect to

the base circle, and if p' meet OP at N', then ON'.OP^k2
,
where

k is the radius of reciprocation (Art. 54). Similarly a straight line

p corresponds to its pole P', so that if N be the foot of the per-

pendicular from 0 upon p, P' lies on ON and ON.OP' =k2
.

A change in the radius of reciprocation has merely the effect

of altering the scale of the reciprocal figure. Thus, if a figure cf>

transforms into </>' when the radius of reciprocation is \ and into

<f>" when the radius of reciprocation is k2) the line p transforms
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in the first case to P' on ON where OP'.ON -kx
2 and in the second

case to P" also on ON, where OP".ON = Jc2
2

. Thus OP' :OP"
z=ky2 : k2

2 and the figures <£',
<f>

"

are similar and similarly situated,

0 being the centre of similarity, and kY
2

: k2
2 the ratio of similarity.

Hence results independent of the scale of the figure are independent

of the choice of the radius of reciprocation and the latter may often

be chosen so as to have any convenient value, or be left altogether

unspecified.

When this last is the case, the reciprocation is specified by the

origin 0 and is often described briefly as reciprocation with respect

to 0.

Note also that it is not essential that k2 should be positive : if

k2 is negative the construction still leads to a real reciprocal figure,

only in this case a line and its reciprocal are on opposite sides of

the origin.

The fundamental property of reciprocation with respect to an

origin 0 is the following.

If a, b be any two lines, A', Bf

their reciprocal points, then OA ',

OB' are perpendicular to a
,
b respectively.

Since OA', OB' are drawn either both towards or both away
from a and b, A'OB' is equal to that angle between a, b which

does not include 0 and supplementary to that which does include 0.

Thus : the angle between any two lines is equal (or supple-

mentary) to the angle subtended by their reciprocal points at

the origin of reciprocation.

Other important properties relate to points at infinity. Thus

a point P00 reciprocates into the line through 0 at right angles to

OP00
. The line at infinity reciprocates into 0 itself.

A circular point at infinity Q therefore reciprocates into a straight

line through 0 perpendicular to 0O. But 00, being a double ray

of a '"rectangular involution (Art. 141) is at right angles to

itself. Thus O reciprocates into 00 and similarly O' reciprocates

into 0O'.

178. Reciprocation of a circle with respect to an excentric

origin. Let C (Fig. 56) be the centre of the given circle, 0 the

origin of reciprocation, AB the diameter of the given circle passing

through 0. The reciprocal curve of the circle will be a conic

(Art. 56). Also, by symmetry, one of the axes of this conic will

be along AB.
Since O, O' lie on the circle, 0O, 00' are tangents to the conic.

Hence 0 is a real focus of the conic, so that AB is the focal axis.
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Now C is the pole of the line at infinity with respect to the

circle. Hence in the conic the reciprocal c' of C is the polar of

0 with respect to the conic, that is, the directrix corresponding

to 0,

Again, the centre C' of the conic is the pole of the line at infinity

with respect to the conic, and so is the reciprocal of the polar c

of 0 with respect to the circle. The second focus H is the point

such that C' bisects OH.

The tangents from H to the conic are circular lines HO, HQ'

which reciprocate into points 7, J of the circle, where 07, OJ are

perpendicular, and therefore, by the property of circular lines, also

parallel, to 7/0, HQ' respectively. Accordingly 07, OJ pass

through O, Q' respectively, so that 7*7 and the line at infinity

00' are opposite common chords of the given circle and the line-

pair (00, 00'), which latter is (Art. 140) identical with the point-

circle 0. 1J is therefore the radical axis of the given circle and

0, and so is a real line h' at right angles to OC. Thus H is the

reciprocal of this radical axis, a property which we shall require

later.
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To find the eccentricity of the conic, reciprocate the tangents

a, b at A, B. This gives the vertices A', B' of the focal axis.

Then OA' =k2/OA, B'O-WjBO, leading to :

major axis ^B'O + OA' = k2

distance between foci = OA' A OB' =--k
2

„ . . . .
BO-OA CO

. „By division, eccentricity ^ numerically.

The conic is therefore an ellipse, parabola or hyperbola according

as 0 lies inside, on, or outside the circle.

A very important particular case is that actually shown in

Fig. 56. This is when the radius of reciprocation is so chosen

that A' ~B and B'~A. This requires k2 =OA.OB, so that for

the elliptic case as in the figure, k2
is negative.

When k2 is so chosen, the given circle is the circle on the focal

axis of the conic as diameter. We see then that a conic and its

auxiliary circle are polar reciprocals with respect to an origin at

a focus.

Note that in this case C and C' coincide, and also c and c'.

Examples

1. Given a focus, the corresponding directrix and the eccentricity of a conic

show how to construct, without drawing the curve, the two tangents from a

given external point 0.

Prove that the angle between the tangents from a point 0 to a parabola is

cos^(q/r), where r is the distance of 0 from the focus, and q is the per*

pendicular distance of 0 from the directrix.

2. Two circles meet at A and B. Taking A as centre of reciprocation,

find the reciprocal theorem of the result that AB is perpendicular to the

line joining the centres of the circles.

3. Reciprocate the theorem : circles of constant radius which touch one

straight line also touch a parallel line, and their centres lie on the line midway
between the two lines.

4. Given a circle centre C and radius r, show how to determine the centre

and radius of the circle of reciprocation so that the given circle reciprocates

into a rectangular hyperbola of which the real axis is of length 2r.

5. If the reciprocal of a circle of radius a and centre C is taken with respect

to a circle of radius b and centre 0, where OC=c, find the eccentricity and
latus rectum of the conic obtained.

Conics are described with a fixed focus 0, their latera recta of the same
given length l, and their corresponding directrices tangent to a given conic

with focus O and latus rectum V. Prove that their envelope consists of two
conics, each of which has a focus at 0, and that the reciprocals of the latera

recta of these conics are the sum and difference of the reciprocals of l and V.
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179. Examples of focal properties of conics deduced by

reciprocation with respect to a circle. A number of the focal

properties discussed in Chapter VIII are very readily deduced from

simple properties of the circle by this form of reciprocation. As

they give valuable examples of the method, we shall set out the

proofs of a few such properties. It will be convenient to assume

for k that value which reciprocates the circle into a conic of which

it is the auxiliary circle, so that C is the common centre of circle

and conic and the foci 0 ,
H are symmetrically situated with respect

to C.

(a) Let v
, q (Fig. 56) be any two tangents to the circle, then

they are equally inclined to their chord of contact VQ .

Using the fundamental property of reciprocation with regard to

a circle (Art. 177), OV\ OQ' are equally inclined to 0(v'q'), where

v'q' is the intersection of the tangents at V\ Q' to the conic.

Hence the theorem that two tangents to a conic subtend equal

or supplementary angles at a focus.

In the figure, which is drawn for the ellipse, the angles ZVQ
and ZQV either both include or both exclude 0, and we get the

case of equal angles.

If 0 is outside the circle, the points of contact of tangents from

0 reciprocate into the asymptotes, and divide the arcs of the circle

which correspond to the two branches of the curve. The reader

will find the discrimination of the two cases for the hyperbola a

useful exercise.

(b) Let PO (Fig. 56) meet the circle again at T. Then OP.OT
= 0A.0B = &2 . The line through T perpendicular to OT is then

a tangent to the conic
;

it meets the circle again at R
,
and, since

PTR is a right angle, PR is a diameter. Hence by symmetry HR
is parallel and equal to PO

,
and

HR.OT =P0.0T = B0.0A =a2
(1 -e2

)
= b2

,

where a is the semi-major and b the semi-minor axis.

We thus obtain the two theorems of Art. 125.

(c) Let the tangent p at P meet IJ at Y. By a well-known

property of the radical axis of two circles, the lengths of tangents

from Y to the given circle and to the point circle 0 are equal.

Thus OPY is an isosceles triangle and PY,0Y are equally inclined

to OP. Now Y is phf and reciprocates into P'H
,
so that OY

reciprocates into the point at infinity on P'H, Similarly OP
reciprocates into the point at infinity on p'. Finally PY is p
and reciprocates into P'. Hence by the fundamental property OP'
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and the parallel through 0 to P'H are equally inclined to the parallel

through 0 to p'
, i.e. OP', P'H are equally inclined to p’ or the

tangent and normal bisect the angles between the focal distances.

(d) If F, Q are fixed points on the circle, P a variable point, the

angle VPQ is constant.

Hence, in the reciprocal figure, the angle between 0(v'p
f

)
and

O(q'p') is constant, i.e. the intercept on a variable tangent p'

made by two fixed tangents v', q' subtends a constant angle at

the focus (Art. 122).

(e) The tangent p to the circle at P is perpendicular to the radius

vector CP. Therefore OP' is perpendicular to O(c'p'), that is,

the part of the tangent to a conic intercepted between the point

of contact and a directrix subtends a right angle at the corresponding

focus (cf. Art. 121).

(/) ZF, ZQ being two tangents v, q to the circle are equally

inclined to CZ. Hence OF', OQ' are equally inclined to 0{c'(V'Q')},

i.e. if a chord V'Q' meet the directrix corresponding to focus 0
at, say A, then OX is a bisector of the angle V'OQ' (cf. Art. 121).

(g) Two parallel tangents p ,
r to the circle are a constant distance

apart.

But perpendicular distance of 0 from p^k2jOP\
and perpendicular distance of 0 from r = k2/R'0.

Hence Qp? + R!0
~ const., where P'OR' is a chord of the conic

through 0. By taking this chord to be the latus rectum we find

this constant =2/(semi-latus rectum), and thus obtain the first

theorem of Art. 123.

(h) The locus of the intersection Z of tangents v, q to a circle

which cut at a given angle a is a concentric circle : this leads at

once to the following.

The envelope of a chord V'Q' of a conic which subtends a given

angle at the focus is a conic having the same focus and directrix.

Further, in the above VQ touches another fixed circle concentric

with the original circle. Hence the locus of the pole v'q' of a chord

V'Q' subtending a constant angle at the focus of a conic is a conic

having the same focus and directrix.

180. Case where 0 lies on the circle. When the origin of

reciprocation lies on the circle, the line at infinity touches the

reciprocal conic, which thus becomes a parabola.

If through 0, now on the circle, two perpendicular chords OP,

OQ of the circle are drawn, the join PQ passes through the centre G.
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We have then : p\ q' are perpendicular and p'q
f

lies on the directrix

c', i.e. the intersection of two perpendicular tangents to a parabola

lies on the directrix (cf. Art. 128).

If OA is a diameter of the circle, P any point on the circle, OPA
is a right angle. Therefore the reciprocal point (a'p') of AP lies

on OP, so that a', p\ OP are concurrent. But p' is perpendicular

to OP, so that (p\ OP) is the foot of the perpendicular from the

focus on the tangent p' and this lies on a', which is clearly the

tangent at the vertex (cf. Art. 127).

There is a well-known theorem on the circle, known as Simson’s

Theorem, that if L, M, N are the feet of the perpendiculars from a

point 0 of the circle upon the sides /, g 9
h of a triangle inscribed

in the circle, then L, M, N are collinear.

Reciprocating this result with regard to 0, we have V is a line

through F' perpendicular to OL
,
that is, to OF'. Hence if, through

the vertices F\ G', H' of a triangle circumscribed to a parabola

of which 0 is the focus, we draw lines perpendicular to OF', OG'
}

OH '
,
these are concurrent at some point U. It follows that a circle

on UO as diameter passes through F', G\ H' or the circumcircle

of a triangle formed by three tangents to a parabola passes through

the focus (Art. 130).

Examples

1. Show that the vertices of a triangle can be reciprocated into the opposite

sides if the origin of reciprocation be taken at the orthocentre.

2. Reciprocate the theorem that the orthocentre of a triangle circumscribing

a parabola lies on the directrix, the origin of reciprocation being the ortho-

centre.

181. Coaxal circles reciprocate into confocal conics. Con-

sider a set of coaxal circles k with real limiting points 0, K (Fig. 57).

Then 0, K are harmonically conjugate with regard to the points

P, Q in which any circle of the set meets the line of centres, that

is, the polars of 0, K with regard to any circle of the set pass

through K, 0. Also by symmetry these polars are perpendicular

to the line of centres.

Therefore 0, K have the same polars with regard to all the circles

of the coaxal system, and these polars are the perpendiculars to

the line of centres through K
,
0 respectively.

Now reciprocate the coaxal circles with regard to any circle

centre 0. The circles k reciprocate into conics k' having 0 for a

focus.
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0 reciprocates into the line at infinity, and the line c which

is the common polar of 0 with respect to the coaxal circles re-

ciprocates into a point O' on the line of centres. Thus C' is the

common centre of all the conics k'. Since the conics k
f

have

0 for a common focus, and C' for a common centre, their second

real focus S is also common, so that they are confocal conics.

S lies on the line of centres, and OS =2.0C'. The reciprocal of S
is a line x perpendicular to the line of centres. If it meet this line

at X, then

OX.OS = OK.00'.

But since OS = 2.00', therefore 0K = 2.0X, or X is the middle

point of OK, that is, x is the radical axis.

axis.

Conversely, it is easily shown that confocal conics reciprocate

with respect to one of the real foci, into a set of coaxal circles with

real limiting points.

182. Inversion. Let 0 be the centre of a circle c, of radius k,

P any point in the plane of the circle, P' the point of OP conjugate

to P with respect to c, so that

OP.OP'=k2
(1)

The point P' is then said to be the inverse point of P with

respect to c, and the symmetry of the relation (1) then shows that

P is the inverse point of P' with respect to c. The relation between

the field formed by the points P and that formed by the points



222 PROJECTIVE GEOMETRY

P' is termed inversion, either field being spoken of as the inverse

of the other with respect to the circle ; c, 0 and k are called the

circle, centre and radius of inversion respectively.

Since the polar of P with respect to a circle is perpendicular

to OP, it is clear that the inverse point P' is the foot of the per-

pendicular from 0 on the polar of P.

Although the correspondence of the points is unique, inversion

is not a homography,

for a straight line does

not correspond to a

straight line, but to a

circle through the origin.

To prove this, let a

(Fig. 58) be any straight

line, A the foot of the

perpendicular from 0 on

a, P any other point on

a. Let A\ P' be the

inverse points of A, P.

Then OA.OA'=OP.OP',
or OP' : OA' =OA : OP.

Since the angle at 0
is common, the triangles

AOP, P'OA' are similar,

and the angle at P' is

equal to the angle at A, and therefore to a right angle. Therefore

P r

describes a circle on OA' as diameter.

183. The inverse of a circle is, in general, a circle. Let c

(Fig. 59) be any circle whose centre is C and radius a . Let P be

any point of c
,
P' its inverse point. Let OP meet c again at Q .

Then: OP.OP' =lc\

OP.OQ = OC2 - a2
.

Hence OP'.OQ = k2 : (OC2 - a2),

whence the locus of P' is similar and similarly situated to the locus

of Q, 0 being the centre of similarity, and the ratio of similarity

being k2j(OC - a2).
Since the locus of Q is the original circle, the locus of P' is also

a circle d

,

whose centre K is in the line OC. If 0 is outside c, a
pair of common tangents to c, c

f

pass through it.

Thus every circle inverts into another circle, except when the
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first circle passes through the centre of inversion, when, as in

Art. 182, it inverts into a straight line perpendicular to OC.

It should be noted that the centre of the circle c does not invert

into the centre of the circle c', so that K is not O'.

It is also important to remember that a conic does not, in general,

invert into a conic. For, consider the inverse s' of a conic s, and the

intersections of s' with a straight line t'. This line t' inverts into

a circle t9 which has four real or imaginary intersections with the

conic s. The inverse points of these four intersections are the

Fig. 59.

intersections of t' and s'. These latter are thus four in number,

so that s' is, in general, a quartic curve.

Example

Given a point O and a circle centre G and radius r, show how to determine

the radius of a circle of inversion, centre O, so that the circle, centre C, inverts

into another of radius 2r, and find the position of the centre of this inverse

circler

184. Circles through two inverse points. Let P, P'Jbe'fany

two inverse points with respect to a circle v of centre 0 and radius

k, and let c be any other circle passing through P and P'.

Let Q be an intersection of v and c . Then OQ = k
,
the radius of

inversion, and OP.OP'=OQ2
.

Hence, by a well-known property of the circle, OQ is a tangent

from 0 to the circle c, and the circles c, v cut at right angles.

Thus any circle through two inverse points is orthogonal to

the circle of inversion.

Conversely, if two points P, P' are such that two circles Cj, c2
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through jP, P' are orthogonal to the circle of inversion v, then P, P'

must be inverse points.

Let Qi be an intersection of v and c
x

. Since these cut at right

angles, OQ
Y
is tangent to c

Y
at Qv

Join OP and produce it to meet c
Y
again at R\. Then by a well-

known property of the circle, OP.OR
Y
^OQ2 = k2

. RY
is therefore

the inverse point of P with respect to v.

Similarly, if OP meet c2 again at R2) R2 is the inverse point of P
with respect to v

,
and so is identical with R

} ,
which is thus an

intersection, other than P, of the circles c
Y ,

c2 . Since, by hypothesis,

this second intersection is P', P' is identical with RY and so must be

the inverse point of P.

It follows that, if two circles through P, P' are orthogonal to the

circle of inversion, every circle through P, P' will be orthogonal

to this circle.

Examples

1. The limiting points of a set of coaxal circles are inverse points with
respect to every circle of the set.

2. If the radius of the circle of inversion is made infinite, so that the

accessible part of the circle is a straight line, show that any two inverse points

are images of one another in the straight line.

3. Prove that a circle passing through two inverse points inverts into

itself.

185. Homography on circular bases is preserved by inversion.

Although inversion, considered as a relation between plane fields,

is not homographic, yet it preserves homographic properties as

regards ranges on corresponding circles (including straight lines as a

particular case).

Referring to Fig. 59, it is clear that, since P', Q are corresponding

points in a similarity, and a similarity is a particular case of a

plane perspective and therefore of a homography, we must have

[Q]2a[P']2.

But, since OPQ is a chord of the circle c through a fixed point, P, Q
are mates in an involution on the circle.

Hence [P]2x[0]2 and [P]2 a[P']2.

Thus a range of the second order on a circle inverts into a
homographic range of the second order on the inverse circle.

The case of a range on a straight line follows immediately from

Fig. 58 ; here [P]tcO[P] a [P']2 .

Since straight lines do not invert into straight lines, this property

is not applicable to pencils.
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If now w© have, in any figure, two homographic ranges [Pi]2,

[P2]
2 on circular (or rectilineal) bases, then the inverse ranges

[Pi']
2

,
[P2']

2 are such that

[P1
']27T[P

1 ]2, [P2'J
2 a [P2]2

and since [Pi]2 a|P2]
2

,
therefore [Pj'J

2^^']2
,
or : homographic

ranges on circular bases invert into homographic ranges on the

inverse bases.

186. Angles invert into equal angles. In Fig. 58, let the

tangent at P' to the locus of P' be drawn, as P'T'.

Then the angle T'P'O is equal to OA'P' in the alternate segment,

and this again, by the similarity of the triangles AOP, P'OA',

is equal to OPA.
The line a and its inverse circle a' therefore make equal angles

with OPP', but on opposite sides of it. By considering small

elements it is easily seen that the same holds good of any two

corresponding curves.

If now we have two curves s
,

t intersecting at any angle at

P, and the two corresponding curves s', t! intersecting at the

corresponding point P', then s, t make with OP, on one side of OP'P,

angles equal to those which s', t' make with OP' on the other

side of OP'P. By subtraction, the angle between s, t at P is equal

to the angle between s', t' at P'.

Inversion is therefore what is usually termed a conformal

transformation, that is, any elementary small figure inverts into

a similar figure. It will be found, however, that they are oppositely,

and not directly, similar, that is, they cannot be brought into

similar situation by a relative displacement in their plane, but one

of them must be turned over as a preliminary.

Note that, as a particular case of the theorem of the present

article, an orthogonal intersection of two curves inverts into an

orthogonal intersection of the two inverse curves.

Examples

1. Describe, with diagrams, the possible geometrical configurations which
may be obtained by inverting the plane figure formed by two parallel straight

lines and a line meeting them at right angles, with respect to a circle in the

plane.

Three circles touch one another in pairs. Prove that the circle through
the three points of contact cuts the three circles orthogonally.

2. Show that if a, o' are two very small corresponding areas at corre-

sponding points P, P' in inverse fields, then in the limit a : o'=OP* : k*.
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187. Inversion of coaxal circles. Let ei9 c2 , c3 , etc., be a

set of concentric circles, whose common centre is C. All straight

lines l through C are then orthogonal to the circles c.

Now invert the field with regard to any given point 0. The
straight lines l invert into circles V passing through 0 and through

the inverse point C' of 0, that is, into coaxal circles with real

intersections 0, C'.

The circles c then invert into circles c' which are orthogonal

to the circles V and therefore, by Art. 113, form a set of coaxal

circles with imaginary intersections but real limiting points.

One of these limiting points is clearly (7, since C is the point-

circle of the set c, and a point-circle must invert into a point-circle.

To find the second limiting point, we note that, if c°° is the circle

centre C, of infinite radius, all the points of c°° invert into 0,

which is therefore a point circle inverse to c00 .

Thus a set of concentric circles invert into a set of coaxal

circles having for real limiting points the centre of inversion

and the inverse point of the common centre.

Conversely, if we invert such a set of coaxal circles with respect

to one of their limiting points, we obtain a set of concentric circles.

For the coaxal circles through the limiting points are orthogonal

to the given coaxal circles, and invert into straight lines through

the inverse of the second limiting point, which straight lines are

orthogonal to every one of the new set of circles. But a circle

which is orthogonal to a pencil of rays through a point has that

point for centre
;
the required result follows.

Note also that, since coaxal circles are circles through two
fixed points (real or imaginary), coaxal circles necessarily invert

into coaxal circles, whatever the centre of inversion.

We may therefore regard concentric circles as a particular case

of coaxal circles. In this case the (ordinary) common points

A, Boi the circles coincide with Q, £2', so that the circles touch at

£2, O', as we should expect, and the common radical axis is the line

at infinity.

Examples

1. Prove that two circles of a given coaxal system touch an arbitrary
fixed straight line, and also that they are inverse with respect to that circle

of the system which has its centre on the given straight line.

2. If a circle touches two given circles clf c 2, the points of contact are
concyclic with the limiting points of the coaxal system determined by c A , c 2 .

3. If two variable circles touch one another, and also each of two given
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circles cv c2, show that the locus of their mutual point of contact is a circle

coaxal with cv c2.

4. Two given coplanar circles a, b have centres A, B

;

the inverse of a

point Px
with respect to a is P and the inverse of P with respect to b is P2 .

Prove that, when Px
describes a circle or a line, the corresponding point P2

describes either a circle or a line ; and show that, in the correspondence

between the fields [PJ, [P2], the system of coaxal circles with limiting points

A t Px corresponds to the system of coaxal circles with limiting points B, P2 .

5. Invert the theorem : the locus of centres of circles which touch two
concentric circles is two concentric circles.

188. Inverse figures invert into inverse figures. Let
<f> , <f>'

be two figures which are inverse with regard to a circle k .

Invert both
<f>

and
<f>

f
with respect to another circle s. We

obtain two new figures and </>/ ; the circle k inverts, in general,

into a circle k x
.

Let P, P' be any two corresponding points of
<f>, <f>'

and let their

inverses with regard to $ be Pi, P{.

Let cx be any circle through Pl5 P{

.

This corresponds, in the

inversion with regard to s
y
to a circle c passing through P, P'.

By Art. 184, c and k cut orthogonally. Hence, by Art. 186,

cx and k
x

cut orthogonally. Thus any circle through Px ,
P

x

cuts k
x
orthogonally, and, by Art. 184, Px ,

P
x

are inverse points

with regard to kx . Since P1} Px
are an arbitrary pair of corre-

sponding points, the figures
<f> x , <f> x

are inverse with regard to kx .

Thus two inverse figures invert into two inverse figures, the circles

of inversion being inverted into one another.

Example

Prove that two fields inverse with respect to a circle can be inverted into

two fields which are the reflection of one another in a straight line.

EXAMPLES XI

A

1. Show that a correlation projects into a correlation, and the base conics

into base conics.

2. In two coplanar reciprocal fields <j>v <j> 2 the lines a 2, b 2, c2 in
<f>2 which

correspond to the vertices Av Bly Cx of a triangle in
<f>x

coincide respectively

with the opposite sides BxCXy CXAV A 1B1 . Show that every point of the

plane corresponds to the same line in either field.

3. Show that the only correlation in which every point corresponds to the

same line in either field is the transformation by reciprocal polars.

4. Discuss the characteristics of the correlation in which the base conics

are concentric circles centre 0. Show that the two lines which correspond

to any point P are equally inclined to OP and that they intersect on OP
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at a point P' which lies on the polar of P with respect to the circle k x which
is the locus of incident points.

Prove also that the angle between the two lines corresponding to P is

constant and equal to the angle between the tangents to k % from any point

of kx . Hence show that, if the correlation is real, k2 must be interior to kx ,

5. By projecting the circular points into any given points, deduce the

results corresponding to those of Ex. 4 in the case of a general correlation.

6. In a correlation three lines a, b , c through a vertex U correspond to

three points A', B', C' on a line u' through U. Obtain a construction, using

the ruler only, for the point V' corresponding to the line v—u\ and also for

the line t corresponding to the point Tf— IJ.

7. Reciprocate the theorem, that the angle in a segment of a circle is

constant, with respect to the point at which one of the arms of the angle

meets the circle, and hence show that if through the focus 0 of a parabola a
line OP is drawn to meet a variable tangent to the parabola at P and making
a fixed angle with this tangent, the locus of P is a fixed tangent to the

parabola.

8. From the result that a chord of a circle which touches a concentric

circle subtends a constant angle at the common centre deduce the following

theorem.

If there be two conics having the same focus and corresponding directrix

and if two tangents to one conic meet on the other conic and intersect the

directrix at X Y, then XY subtends a fixed angle at the focus.

9. If from a fixed point tangents are drawn to a series of concentric circles,

find the locus of their points of contact. Hence obtain the following theorem
by reciprocation. A fixed line meets a number of conics which have the

same focus and corresponding directrix ; then the envelope of the tangents

at the points of intersection is a conic touching the fixed line and also the

common directrix.

Hence find the envelope of the asymptotes of conics having a common
focus and directrix.

10. If the two common tangents to two conics having a common focus

O intersect at A and through A a line APQ be drawn meeting one conic at

P and the other at Q , then, if the tangents at P and Q meet at P, OR is a
bisector of the angle POQ.

[Reciprocate the theorem that tangents to two circles from a point on
their radical axis are equally inclined to the line joining their points of

contact.]

11. A variable chord of a rectangular hyperbola subtends a right angle at

a fixed point 0. By reciprocation with respect to a circle having 0 as centre

show that the locus of the foot of the perpendicular from 0 on the chord
is a straight line.

12. Prove that the polar reciprocal of a circle, taken with regard to a
rectangular hyperbola, is a conic of which the centre of the rectangular

hyperbola is a focus.

13. A conic is inscribed in a triangle ABC and has one focus at the cir-

cumoentre. Prove that the other real focus is the orthooentre.

14. Through a point 0 in the plane of a circle perpendicular rays OP, OQ
are drawn to the circle. Show that PQ touches a fixed conic with a
focus at 0.

[Reciprocate the property of the orthoptic circle.]
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15. Prove that if through a fixed point 0 inside a circle a straight line

be drawn, meeting the circle at P and Qt the sum of the reciprocals of the
perpendiculars from O on the tangents at P, Q is constant.

Obtain from this the theorem that the sum of the focal distances in an ellipse

is constant.

16. Show that if ABC is a triangle and 0 any point in its plane, and if

through O perpendiculars OP, OQ, OB are drawn to OA, OBy OC to meet
BCy CA> AB respectively at P, Q, B, then PQR are collinear.

17. s' is the reciprocal of a curve s with respect to a point 0, and P' is

the point of s' corresponding to the tangent to s at P. If p, p

'

are the

radii of curvature of s, s' at P, P' respectively, prove that pp'—kz cosec8 <j>,

where k is the radius of reciprocation, and
<f>

is the angle between OP and the

tangent to s at P.
Illustrate this result by using it to find the radius of curvature at a point

of a conic.

18. A circle c touches an ellipse k at P, and has its centre 0 on the orthoptic

circle of k

;

the other common tangents qy
r of c and k touch the circle c

at Qy B respectively. By reciprocation with regard to r, show that there

is one rectangular hyperbola which touches k at P and passes through Q
and B ; and that its asymptotes are parallel to the tangents from O to k.

Prove also that chords of this hyperbola which subtend right angles at 0
touch a certain parabola whose focus is O.

19. Prove by reciprocation the following.

A variable tangent p to a conic having $ as focus meets two fixed tangents

a and b at P and Q respectively
;
a line q through Q meets a at a point L

such that the angle PSL is a constant angle. Show that the envelope of

q is a conic having JS for focus and touching a and b.

20. Prove that the reciprocal of a parabola k with respect to a circle c,

whose centre 0 lies on k , is another parabola k\ which touches at 0 the

perpendicular from 0 to the axis of k, and has its axis parallel to the normal

at 0 to k.

Show also that the directrix of k' is the reciprocal, with respect to c, of the

Fregier point of 0 with respect to k.

If c has its centre 0 at an extremity of the latus rectum of k, prove that

the focus of k' lies on the tangent at O to k.

21. Reciprocate, with respect to a circle with centre at a focus, the property

that confocal conics intersect at right angles.

22. If one conic s is its own polar reciprocal for another conic t then the

conic t is its own polar reciprocal for the conic s .

[Show that the conics have double contact at A, B and that if C be the

common pole of AB then if a ray through C meet t at Uf T the tangent at

TJ is the polar of T with regard to 5.1

23. Show that given two points A, B of a conic 5, a conic t can be found

touching s at A, B and such that s is its own polar reciprocal with regard to t.

24. If a figure be inverted with regard to any origin, show that an involution

on a circle inverts into an involution on the corresponding circle.

25. Invert the theorem : tangents to a fixed circle cut a fixed concentric

circle at a constant angle, the centre of inversion being a point in the cir-

cumference of the second circle.

26. Prove that the circles which pass through a given point L and cut a
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fixed circle c at a given angle a all touch a second fixed circle k ; and that L
is a limiting point of the coaxal system determined by c and h
Show also how to construct the circle k.

27. PQ is a common tangent to two circles and L, M are the limiting points

of the set of coaxal circles determined by the two circles. Prove that PLQ ,

PMQ are right angles.

Transform this result by inversion, (i) from L, (ii) from M .

If PEt QS are chords of the circles passing through L, prove that ES is

also a common tangent.

28. Pt and P2 are the inverses of a point P with respect to two different

circles kx and k%
respectively. If the inverse ofP

1
with respect to k2 coincides

with the inverse ofP2 with respect to kv show that kx and k% are orthogonal.

EXAMPLES XIb

[The axes of co-ordinates are to be taken rectangular.]

1. The points (3, 1), (-3, 0), (1, 2), (1, -2) correspond to the lines rr=3,

- 3, y=2, ?/= - 2 in a correlation.

Find (i) the other incident points on the four given lines
;

(ii) the other

incident lines through the four given points. Hence construct the base-

conics.

2. With the data of Ex. 1, construct (i) the lines corresponding to the

origin
;

(ii) the points corresponding to the line at infinity.

3. The base-conics of a correlation are the hyperbola

x 2 -3y2= 1

and its auxiliary circle. Construct the conic corresponding to the conjugate

hyperbola.

4. The circles (o;~2) 2+ 2/
2= 9, (x+4) 2+y 2= 1 are reciprocated with respect

to the circle x 2 + (y- 1)
2= 1.

Without drawing the reciprocal curves of the first two circles, find their

four intersections.

5. Two circles centres A and B have radii 1 inch and 2 inches respectively,

and AP= 4 inches. Find (i) a circle with respect to which they reciprocate

into confocal conics, (ii) the four intersections of these conics, (iii) the

tangents at these four intersections.

6. Two circles centres A and B have radii 3 and 4 inches respectively, and
AB— 2 inches. Find a centre of inversion which inverts the above circles

simultaneously into straight lines. If P, Q are two points such that AP— 7

inches, AQ— 1*5 inches, and the angles BAP, BAQ are 30°, 135° respectively,

construct the circles orthogonal to the given circles and passing through P, Q
respectively. Construct also the circles inverse to the last found circles.

7. A circle passes through the point P (3, 4), and touches the axis of x

at the origin 0 of co-ordinates. If its inverse circle passes through the point

P' (2, -1) inverse to P, and the chord of this inverse circle corresponding to

OP is of length 4 units, construct the circle of inversion.



CHAPTER XII

HOMOGRAPHIC PLANE FORMS OF THE SECOND ORDER

189. Construction of coplanar homographic forms of the

second order. In what follows we shall extend the definition of

incident forms, already given for projective ranges and flat pencils

in Art. 24, to cover all homographic unlike forms such that each

element of one form is incident with the corresponding element of

the other form. Thus the pencil of the second order formed by the

tangents to a conic is incident with the range of the second order

formed by their points of contact, and a range of the second order

is incident with the flat pencil determined by it at any point of its

conic base.

Let two projective ranges of the second order on two conics sx

and s2 be given by two corresponding triads AiB^i, A2B2C2

(Fig. 60). Corresponding points of the two ranges may be con-

structed as follows.

Join A xA 2 meeting s x
again at V and s2 again at F. Let UBX ,

VB2 meet at B3 and UCX ,
VC2 meet at C3 . Join B3C3 =u3 meeting

UV at A 3 . Then if Px be any point on and UP
X
meets u3 at

231
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P3 and FP3 meets s2 again at p* the ranges of the second order

[Pj]2
,
[P2]

2 are homographic and they have A
xBiCi 9

A2B2C2 for

corresponding triads. They are therefore the ranges required.

If one of the ranges, say A 2B2C2 , is of the first order, a similar

construction holds, but this time F may be taken any point on

dis-
similarly if two pencils of second order about conics s l9 s2 be

given by the corresponding triads a{b
xCi 9

a2b2c2 (Fig. 61), then

from d(=a
2
a2 )

draw the other two tangents u, v to s lf s2 . Let

ubi=Bi, uci=Ci, vb2 - B2 ,
vc2 —C2 . Let BiB2 —b2 , CiC2 — c3

and let 0 be their intersection
;

let OA =a3 . Then if pi be any

tangent to s
x
meeting u at P1? and if OPi be joined to meet v at

P2 and j)2 be the other tangent from P2 to s2 ,
the pencils of the

second order ['Pi}
2

, [p2]2 are homographic and have a^iCy, a2b2c2 for

corresponding triads.

A similar construction holds if the pencil [j?2] is of the first

order, only now v may be taken any line through A and p2 is

joined to the vertex of the pencil [p2] instead of being drawn tangent

to a conic.
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If the given forms are unlike, say a range and a pencil of second

order, we can correlate as above the given range of the second

order with the range formed by the points of contact of the given

pencil of second order. In this way the two original forms are

geometrically connected.

190. Number of self-corresponding elements of homographic

forms of first and second order, not on the same base. Clearly

a range of the first order and a range of the second order homo-

graphic with the first range cannot have more than two self-corre-

sponding elements since a straight line meets a conic in two points

only. They may have two self-corresponding elements, for if we

take a flat pencil whose vertex is on a conic, the homographic

ranges determined by this pencil on the conic and on any straight

line have the intersections of the

straight line and conic for self-

corresponding points.

Conversely if such ranges have

two self-corresponding points, say

A
,
B

,
the lines joining their corre-

sponding points pass through a

vertex 0 lying on the base of

the range of second order. For

let C, C' be corresponding points

on the straight line and conic

respectively (Fig. 62). Join CC' meeting the conic again at 0.

Then if P, P' are on a line through 0, the ranges [P], [P']2 are

projective. But they are determined by the same triads ABC,

ABC ' as the original ranges. They are therefore identical with these

ranges.

In like manner if a pencil of the first order be homographic

with a pencil of the second order, they may have two self-corre-

sponding elements, namely the tangents from the vertex of the first

pencil to the conic which is the base of the second pencil, but they

cannot have more. Also, when they do have two self-corresponding

lines, we can show, by reasoning similar to that used for the ranges,

that corresponding lines intersect on a tangent to the conic which is

the base of the pencil of second order.

191. Two homographic forms of the second order cannot

have more than three self-corresponding elements. Two

homographic ranges of the second order have their bases and s2
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intersecting in four points, but they cannot have more than three

self-corresponding points.

In the first place we will show that they may have three self-

corresponding points. For let 0, A ,
B, C (Fig. 63 (a)) be the four

intersections of the conics Si>s2 ;
through 0 draw any ray to meet Sj

again at P and s2 again at P', then the ranges [P]2
,
[P']2 are homo-

graphic and they have the points A
}
B,C self-corresponding.

In the second place two such ranges cannot have more than three

self-corresponding points. For let A, B, C be self-corresponding

points. Then the self-corresponding triad ABC determines the

correspondence between the two ranges uniquely. Now the ranges

described on the conics by a ray OPP' through 0 satisfy the given

conditions
,
sincetheyhave A y

B,C for self-corresponding points. The

given ranges [P]2
,
[P']2 are therefore such that the join PP' of

corresponding points passes through 0. If these ranges have a

fourth self-corresponding point this can only be 0. But the conics

do not touch at 0, since they already have three other intersections

A, B
,
C. Thus if P be at 0, P' is at Q' where the tangent at 0 to s

x

meets s2,
and if P' be at 0, P is at R where the tangent at 0 to s2

meets Sj. Therefore 0 is not in general self-corresponding.

If the conics touch at 0, 0 is indeed self-corresponding, but

the conics, having already two coincident intersections at 0, can
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have only two other distinct intersections
;

so that in any case

there are not more than three self-corresponding points.

In like manner two homographic pencils of tangents to two
conics sly s2 (Fig. 63 (&)) can have at most three self-corresponding

elements, namely three of the common tangents to «j, s2 . For, if

a, i ,
c be these common tangents, they determine, as in the case

of ranges, the relation between corresponding tangents of the

pencils, namely, that two such corresponding tangents p, p
r meet at

P on the fourth common tangent u to Sj, s2 . But u is not self-

corresponding
;

for if p is taken coincident with w, P is at the

point of contact Q of u with s
x
and the second tangent q

'

from Q
to s2 is not coincident with u, unless s

x
and s2 touch u at the same

point. But in this case two of the common tangents coincide with

u and there are only two others remaining.

In the above, no distinction has been made between real and

imaginary intersections or common tangents. We shall follow this

practice in future, except where the contrary is explicitly stated.

192. If a form of the first order has more than three elements

incident with their corresponding elements of a homographic

form of the second order, the two forms are altogether incident.

In the case of two forms of the first order, if more than two elements

are incident, the forms are incident. Thus, if three rays of a flat

pencil, &], b
Y ,

c l5 pass through the corresponding points A 2 ,
B2 ,

C2 of a homographic range on a straight line u, the range determined

by the pencil upon u has three self-corresponding points with the

original range and so coincides with it.

In the case of forms of the second order, however, this no longer

applies, because the points in which a pencil of the second order

meets any straight line do not form a range homographic with the

pencil, unless the straight line happen to be a tangent to the

conic which is the base of the pencil. The student can easily

convince himself of this by reversing the process, when he will

find that, although to each tangent to the conic corresponds only

one point of the straight line, to each point of the straight line

correspond two tangents to the conic. The correspondence is

therefore not one-one.

Consider a range of the second order [P]2 on a conic s homo-

graphic with a pencil [p'J of the first order whose vertex is U.

Take a vertex 0 on s and join OP =p. The pencil [p] is of the first

order and [p]^[P]2^[p']. The locus of Q =pp' is a conic t passing

through 0 and the vertex of [p'j. The conics s, t have therefore
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three other intersections besides 0, of which at least one is real if

$, t and 0 are all real, since by Art. 138 imaginary intersections

occur in pairs and 0 is already one real intersection. But at an

intersection of s, t the ray p' passes through its corresponding point

P, and, conversely, if p
f
pass through P, P is an intersection of s, t.

Hence there are three pairs of corresponding elements incident, of

which one pair is always real.

This holds even if 0 be on its corresponding ray, for then, if P
be at 0, OP is tangent to the conic t (since it corresponds to the

join of the vertices). But OP is also tangent to the conic s . Thus

8 } t touch at 0 and have only two other intersections.

If then there were a fourth pair of corresponding elements

incident, the conics s
,

t would have five points common and would

coincide
;
the vertex of [p'], which lies on t would then also lie on s,

and every pair of corresponding elements would be incident.

Reciprocating this theorem we obtain the corresponding theorem

for a range of the first order and a pencil of the second. The proof

is precisely similar to the one above if we interchange terms according

to the rules given in Art. 57. The result runs :

If a pencil of the second order and a range of the first order be

homographic, then, in general, three pairs of corresponding elements

are incident, of which at least one pair are real. If more than

three pairs are incident, the two forms are altogether incident and

the base of the range touches the base of the pencil.

193. The product of two homographic pencils of the first

and of the second order respectively is a cubic. If we form

the product of two coplanar homographic pencils [p], [p']
2

,
we

obtain a curve in the plane. Draw any straight line u in the plane.

This meets [p] in a homographic range of the first order [P], Then,

if Q =pp', a point P of u is on the locus of Q if it lies on its corre-

sponding line p'. By the last Article there are three such points P
on every line u, of which one at least is real. The locus is therefore

one of the third degree, or, as it is called shortly, a cubic.

194. The vertex of the pencil of the first order is a double

point on the cubic. Let 0 be the vertex of the pencil of the first

order, s the conic which is the base of the pencil of the second order.

Let u', v' be the two tangents from 0 to the conic, u
,
v their corre-

sponding rays through 0.

Then 0 appears twice on the locus, once as uu r and once as vv\

Also corresponding to these two interpretations of 0 there is a
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different tangen t to the curve . For if p' approaches u\ p approaches

u and the point Q =pp' approaches 0 so that OQ approaches u.

u is therefore one tangent to the curve through 0. Similarly if p'

approaches v\ Q approaches 0 as OQ approaches v. So that v is

another tangent to the curve at 0. The curve has two branches

which intersect at 0.

Such a point O is called a double point on the curve and every

line through 0 is considered as meeting the curve in two coincident

points at O. The only case of a double point which we have met
with hitherto is that of the degenerate conic or line-pair, where the

intersection of the two lines is a double point.

Observe that a ray through the double point 0 meets the

cubic again at one point only, as it should, to wit, at the point

where it is met by the corresponding ray of the pencil of second

order. There are two exceptions, however, namely the rays u
,

v.

These meet the curve in three coincident points at O and are

known as the proper tangents to the curve at 0.

It may be shown that, in order that a cubic may have a double

point, a certain condition must be satisfied. Hence the cubic of

the present Article is not of the most general type.

195. Construction of directions of the asymptotes of the

cubic. The points where the cubic meets the line at infinity i°°

may be constructed as follows. Draw a tangent a to s (Fig. 64) from

0. Let a ' be the tangent corresponding to the ray a through 0 .

Let c' be the tangent parallel to a, c its corresponding ray. Let

b
, V be any other pair of corresponding lines. Let a, b, c meet

i
00 at A°°, 500

,
C00 and a', b', c’ meet a at A', B', (7 00 (C'00 -^ 00

).

If p, p' be any pair of corresponding lines (not shown in Fig. 64)

meeting i
00

,
a at P00

,
P' respectively the ranges [P00

], [P'] are

projective, and A^B^C™
;
A rBrCfco are two corresponding triads.

The parallel P°°P' through P' to p therefore envelops a parabola

which touches a and t
00 at A', C00 respectively, these being the

correspondents to aicc(=C,<x> ^A°°), This parabola also touches

P'jB00
,

i.e. the parallel through B' to b. We are therefore given

one tangent P'P00
, another tangent a and its point of contact A',

and the direction of the axis parallel to c . The parabola can then

be drawn by Brianchon’s Theorem. The three common tangents

to the parabola and to s
,
other than a ,

then give the directions

of the three asymptotes of the cubic. For let t! be any one of these

common tangents, meeting a at T', and if t be the corresponding

ray, meeting the line at infinity at T°°
}
P'P00

is a tangent to the
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parabola and therefore in the same straight line as t\ Thus tt'

is T00
, a point at infinity on the cubic.

196. The product of two homographic ranges of the first

and of the second order respectively is a curve of the third class

With a double tangent. If [P], [P']2 are homographic ranges on a

line x and a conic s respectively, and any point U is taken in

the plane, then if p~UP, the pencil [p] and the range [P']2

are homographic. They have three incident pairs which

correspond to those cases where V
,
P, P' are collinear, i.e.

where UP is tangent to the envelope of PP'. The envelope is

thus of the third class since from any point three tangents can be

drawn to it.

Let the two points where x meets s be T', F'. Let the corre-

sponding points on x be T, F. Then x occurs twice as a tangent to

the envelope. It is therefore a double tangent and touches the

envelope at T, F.
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197. Degenerate cases of the above. If the two homographic

pencils of Art. 193 have one of the tangents from O to s as a self-

corresponding ray, the whole of this ray forms part of the locus.

The locus of the third degree breaks up therefore into a straight

line and a conic. If the two tangents from 0 are self-corresponding

rays, the whole of each of these rays is part of the locus and the

cubic breaks up into three straight lines, namely the two tangents

from 0 and a third tangent to s (Art. 190).

In like manner if the ranges of Art. 196 have a self-corresponding

point, that point is an isolated part of the envelope. The envelope

breaks up into this point and a curve of the second class, i.e. a

conic. If the ranges have two self-corresponding points, the

envelope breaks up into three points, one of which is on the base

of the range of second order by Art. 190.

198* Two homographic unlike forms of the second order

have four pairs of corresponding elements incident ; and if

they have more than four, they are altogether incident. Let

[p]
2

,
[P]2 (Pig. 65) be a homographic pencil and range respectively,

of the second order, whose bases are si9 s2 ,
respectively. On s2

take a point 0. Then the pencils 0[P], [p]
2 are homographic.

Let Q be the meet of p, OP. The locus of Q is a cubic of which 0
17
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is a double point. But a conic and a cubic are known from analytical

considerations to have six intersections. Hence the locus of Q
meets s2 at six points. Of these 0 counts as two, since 0 is a double

point on the cubic, and the tangents at 0 to the cubic are, in general,

different from the tangent at 0 to s2 . There are accordingly four

others A
,
B, C, D . Corresponding to each such intersection we

have a point P on its corresponding line (since P and Q are then

coincident).

Or we may proceed as follows. Let A be one intersection of

s2 with the locus of Q (it being assumed that at least one such

intersection, real or imaginary, exists). Through such a point A
the corresponding line a passes. Take for 0 the point where a meets

s2 again. The pencils 0[P], [p]
2 have now a for a self-corresponding

ray. The locus of Q now reduces to a conic v through 0 (a being

irrelevant). This conic v (shown by the dotted line in Fig. 65)

cuts s2 at three other points B, C, D, which are incident with their

corresponding lines. 0 is not incident with its corresponding line,

unless v touches s2 at 0
;

for if p is the second tangent to from

0
,
then Q coincides with 0 and P is the meet of s2 with the tangent

at 0 to v, P is then distinct from 0 unless the last-named tangent

is also tangent to s2 at 0. But, if v, s2 touch at 0, they have only

two other points of intersection and there are still only four points

on their corresponding lines.

Hence if there be a fifth point E through which passes its corre-

sponding line e
,
the conics v, s2 have five points in common and

coincide entirely. Thus every point lies on its corresponding line

and the two given forms are incident.

In such a case the bases s2 have double contact. For if, as

has been proved, every point P lies in its corresponding line p,

let r be the second tangent from P to slf meeting s2 again at R.

Then either Rot P corresponds to r, and since P does not correspond

to r, R must do so. If now P coincide with a common point of

$!, $2 > V an(i r both coincide with the tangent to s
1 at P. Hence

the corresponding points P and R also coincide and PR, that is r,

is a tangent to s2 at P, or s 1? s2 touch at every common point.

199. Product of cobasal homographic forms of the second

order. Let [Pi]2
,
[P2]

2 be two homographic ranges of the second

order on the same conic s

.

Let A iy A2 be a given pair of corre-

sponding points of these ranges and ST the cross-axis (Fig. 66 (a)).

Then AiP2 ,
A2P\ meet at U on the cross-axis. Project S, T into

the circular points at infinity O, O', s projects into a circle s'
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(Fig, 66 (£>)), V into a point C/'
00

. Therefore A{P2i A 2 P{ are

parallel, and the ares A{P\, A{P{ are directly equal. The ranges

[Pi]2
,
[P2 f on the circle are thus determined by directly equal flat

pencils whose vertex is on the circle. The arc P1
P2 subtends a

fixed angle at the circumference and therefore at the centre.

Hence the chord P\P<1 touches a fixed concentric circle

Now two concentric circles touch one another at G, G', as has

been shown in the last paragraph of Art. 149. Projecting back

into the original figure, P LP2 touches a fixed conic t which touches

the original conic at S and T.

Reciprocating this theorem, we see that the product of two

homographic pencils of tangents to the same conic 5 is a conic which

Fig . 66.

has double contact with the original conic, the common tangents

meeting at the cross-centre of the pencils.

We have already met a case of the above results in Chapter XI,

Arts. 173, 174, when dealing with the base conics of a reciprocal

transformation.

In the special case where these homographic forms are in involu-

tion, the above envelope and locus degenerate into a point and a

straight line respectively, the point appearing as the intersection

of the two components of a line-pair and the line as the join of the

components of a point-pair. The line-pair in the first case is the

pair of tangents from the centre of involution to the conic and

the point-pair in the second case is the pair of points at which

the axis of involution meets the conic.
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The above theorems are of considerable importance and a

number of interesting particular deductions flow from them. In

particular let there be two ranges on the line at infinity i°° defined

by the intersections with f
00 of two directly equal pencils in which

corresponding rays make an angle a with one another, and let

qco, Q'cc be corresponding points of these ranges. Since i
00 touches

every parabola, the tangents from Q°°, Q/co to a parabola define two

homographic pencils of tangents to the parabola. Their product is a

conic meeting i
03 at the two points corresponding to the point of

contact of i
00 with the parabola. Hence we have the theorem :

the locus of intersections of two tangents to a parabola which

make an angle a (other than right) with one another is a hyperbola

whose asymptotes make an angle a with the axis of the parabola.

200. HomographiC involutions. We may treat a pair of mates

in an involution as a single entity and establish a one-one algebraic

correspondence between the pairs of one involution and the pairs

of another
;

such correspondence does not establish any one-one

relation between the individual mates, but only between the pairs as

a whole. Two involutions correlated in this way will be called

homographic.

We will first show how to derive two homographic involution

ranges on the same conic s one from the other. Let (P
x ,
P

x ),

(P2 ,
P2 )

(Fig. 67) be two corresponding pairs
;

let 0Xl 02 be the

corresponding involution centres and ]) x , p2 the rays through

O
x ,
02 determining the corresponding pairs on s. Then by hypo-

thesis the rays p x , p2 are connected by a one-one algebraic corre-

spondence. The pencils [px ] y [p2\ are therefore homographic : if

Q —

p

xp2 the locus of Q is a conic which meets s at four points

A
,
P, C\ D.

When Q is at A, one point of a pair (P1? Px )
of one involution

coincides with one point of the corresponding pair (P2 ,
P2 )

of the

other involution, though it should be noted carefully that the pairs

as a whole do not in general coincide. Such a point as A will be

spoken of as a self-corresponding point of the homographic involu-

tions. Since there are four such points A, B
,
C\ D two homographic

involutions of points on the same conic have four self-corresponding

points.

But any two involutions, of any type, may always be uniquely

correlated with two involution ranges on the same conic, e.g. two

involution ranges on different straight lines may be projected

from a vertex as two concentric involution pencils and then cut
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by a conic through the vertex
;

and two involution ranges on

different conics may be projected from vertices on the conics into

two non-concentric involution flat pencils and then cut by a conic

through the two vertices
;

also two involution pencils of tangents

to two conics are correlated with the involution ranges formed by
their points of contact.

Hence the above method can ultimately be used to derive

geometrically any two homographic involutions one from the

other.

Also we have the general theorem that two cobasal homographic
involutions have four self-corresponding elements,

201. Harmonic envelope and locus. Returning to the case

of two homographic involutions on the same conic s (Fig. 67),

we have seen (Art. 85) that

(Pi, Pi) are harmonically

conjugate with respect to

(P2 , fY) ^ the lines P\P\,

P2P2
f

are conjugate for s.

Let p3 be the ray through

O
l

conjugate to p2 ;
then

The con-

centric projective pencils

[p3 ]> [Pi] have, in general,

two self-corresponding rays,

each of which determines a

pair (Pi, Pi) harmonically

conjugate with respect to

its corresponding pair (P2 ,

P2 )
in the homographic

involution.

Thus any two homographic involutions on the same conic,

and therefore any two cobasal homographic involutions, have

two sets of mutually harmonic corresponding pairs.

An important result immediately follows from this. Let ki, Jc2

be two conics in a plane, 0 an arbitrary point of the plane, U any

intersection of Jci9 h2 . A variable ray through 0 meets lclf h2 at

pairs of points (Pu P/), (P2 ,
P2 )

respectively, which are clearly

corresponding pairs of mates in two homographic involutions on

hi, k2 . Projecting these from V

,

we have two concentric homo-

graphic involution pencils in which
(
UP

Y , UPi), (UP2 ,
UP2 )

are corresponding pairs of mates. These two involution pencils
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have, by the result proved above, two sets of mutually harmonic

pairs of mates, for which (VP
} ,
UP\) are harmonically conjugate

with respect to (UP2 ,
UP2 ), and therefore (Pl5 P{) are harmonically

conjugate with respect to (P2 ,
P2 ). Thus from any point 0

in the plane two lines can be drawn, meeting k
x
and Jc2 in two

mutually harmonic pairs. Hence the envelope of a line which meets

two conics in pairs of points which are mutually harmonic, that is,

which meets either conic at two points conjugate for the other conic,

is a curve to which two tangents can be drawn from any point of the

plane, that is, it is a conic. This conic is termed the harmonic
envelope of the conics ki, k2 .

Reciprocating the above, we see that the locus of a point such

that the tangents from it to a conic Aq are conjugate for another

conic k2 ,
and conversely, is a conic which is termed the harmonic

locus of kl9 k2 .

If A be an intersection of k
} ,
k2 and the tangent at A to k

l
meet

k2 again at B
,
B and A are harmonically conjugate with respect

to the two coincident points at A, in which the tangent in question

meets k±. Such a tangent is therefore a tangent to the harmonic

envelope, which accordingly touches the eight tangents to k
x ,

k2
at their four points of intersection. Thus the eight tangents at

the intersections of two conics touch a conic, which is the theorem

proved otherwise in Art. 150.

Reciprocating, we see that the eight points of contact of the

four common tangents to two conics lie on the harmonic locus of the

conics.

As a particular case the orthoptic circle is the harmonic locus of its

conic and the point-pair £2, O'. It therefore passes through the

points of contact of the tangents from O, O' to the conic.

202, Case where double elements correspond. In general,

in two homographic involutions, no homographic relation exists

between the individual components of the pairs. In the case where

the double elements correspond, however, such a relation can be

shown to exist.

We notice first that, since, from Art. 200, the relation

between two homographic involutions is determined by a relation

between two homographic simple forms, which latter is itself

determined by two corresponding triads, two corresponding triads

of pairs can be arbitrarily assumed and completely determine the

relation between two homographic involutions.

Suppose now that A lf Bx ,
the double elements of one involution,
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and A2 , B2 ,
the double elements of another involution, correspond.

Let the pair
(Cx , Cx ) correspond to the pair

(C2 , C2 ). Then by the

property of involutions that any pair are harmonically conjugate

with regard to the double elements, we have

{A\C\B\C\} —{A2C2B2C2 } 9

and the sets of four elements A XCX
B

X
Gx , A2C2B2C2 can be brought

into homographic correspondence. Now the homographic corre-

spondence thus defined will transform the involution (Pl9 Px )

into a homographic involution (P3 ,
P3 ') cobasal with (P2 ,

P2 )

and homographic with it. But the cobasal homographic involutions

(P3 ,
P3'), (P2 ,

P2 )
have three self-corresponding pairs, namely

the double elements A 2 ,
B2 and the pair (C2 ,

C2 ). Therefore they

must be identical. Hence this homographic correspondence

connects P
x
with P2 and Px

with P2 ,
i.e. there is a homographic

correspondence between the individual components of the pairs.

Similarly a homographic correspondence exists which connects P
x

with P2 and Px with P2 .

203. Product of two homographic involutions of the first

order. If we form the product of two homographic involution

pencils of vertices O
x ,
02 ,

that is, find the intersections p xp2 , P\P2 >

px p2 , P 1 P2 where (pl9 px ) 9 (p2 , p2 )
are two corresponding pairs,

these intersections lie on a certain locus.

As in Art. 90 we proceed to find the intersections of this locus

with any straight line x. The two involution pencils determine on x

two collinear homographic involutions of which (Pl9 Px )
(P2 ,

P2 )

are corresponding pairs, where P
x =p x

x
9

etc. If either of the

points Px ,
P

x
coincide with either of the points P2 ,

P2 ,
the point

of coincidence lies on a ray of each of two corresponding pairs of

the given homographic involution pencils, that is, it lies on their

product.

But, by Art. 200, there are four such self-corresponding points

of the collinear homographic involution ranges (Pi9 P{) (P2 ,
P2').

The locus therefore meets any straight line in four points, that is,

it is a curve of the fourth degree.

Also the vertices Ol9 02 are double points on this curve. For

let (ul9 u{) be the pair of the pencil vertex 0\ corresponding to

the pair of the pencil vertex 02 of which 020x is a component.

As the ray p2 approaches 020x , (pi9 p{) approach (uXi u
x )

and

two points on the locus coincide at Ox ,
moving ultimately along

u
l9

u
x

. Ox
is thus a double point, (ul9 u

x )
being the proper
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tangents at 0\. In like manner 02 is a double point and, if (v2 ,
v2 )

is the pair of the pencil through 02 corresponding to the pair of the

pencil through 0X of which 0i02 is a component, then v2 ,
v2 are the

proper tangents at 02 .

If 0
X
02 happens to be a self-corresponding ray of the pencils,

the locus breaks up into 0
V
02 and a cubic curve passing through

Oi, 02 . In this case, however, 0l5 02 are not double points on

the cubic, for the two mates to 0
X02 are now the only tangents

at Oi9 02 .

Also if it so happen that the correspondence between the two

involutions is of such a nature that individual mates can be

brought into one-one correspondence (Art. 202), the locus of the

fourth degree breaks up into two conics, these being the products

of the two pairs of homographic pencils formed by the individual

mates.

Reciprocating the above theorems or proceeding directly in a

similar manner, we have the result that the product of two homo-

graphic involution ranges of the first order is a curve of the fourth

class, to which the bases of the given involutions are double tangents.

If the ranges have a self-corresponding point this envelope breaks

up into a point and a curve of the third class. If the individual

mates can themselves be homographically correlated, it breaks up

into two conics.

204. Involution homographic with a simple form. We can

extend this method and define in an analogous manner homography

between an involution and a simple form. In order to establish

the relations between these, we proceed as in Art. 200, and consider

a range on a conic s with a homographic involution range on the

same conic. The range may be defined by a pencil [px ] through a

vertex O
x
on s and the involution by a homographic pencil [p2]

through a vertex 02 not on the conic. We obtain the figure if in

Fig. 67 we take O
x
on the conic. All points P{ then coincide with

01? so that this is really a special case of the last. The product t

of the pencils [j»2] now cuts s at O
x
and at three other points,

and it is easy to show, as in Arts. 191, 198, that is not a self-

corresponding point unless t
,
s touch at 0\. Hence in a homography

between an involution and a simple form on the same conic there

are, in general, three self-corresponding points
;

and the result

can be extended to cobasal involutions and forms of any type as in

Art. 200.

Proceeding as in Art. 203 we can show that the product of an
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involution pencil of vertex 0
X
and a homographic simple pencil

of vertex 02 is a cubic having 0
X
for a double point and passing

through 02 . If 0X02 be a self-corresponding element the locus

breaks up into the line 0j02 and a conic through 0
X
but not through

°2-.

Similarly the product of an involution range on a line u
x
and a

simple range on a line u2 is a curve of the third class having u
x

for a double tangent and u2 for an ordinary tangent. If u
x
u2 be

a self-corresponding point the envelope breaks up into a point and a

conic.

205. The product of two homographic pencils of the second

order is a curve of the fourth degree. Consider two homo-

graphic pencils of tangents about two conics ^ and s2 . Let u be

any straight line in the plane. Take any point P0 on u (Fig. 68)

and draw from P0 pairs of tangents to Sj and s2 touching these

conics at Pl9
P/ and P2 ,

P2
' respectively. Then the involutions

(Plf Pi) (P2 ,
P2 ') are homographic. Let p3 > p> be the points of

contact of the tangents to s2 which correspond in the given homo-

graphy to the tangents at P
l9
P{ to s

x
. Then, owing to this

homography, the pairs (P3 ,
P3 ') form an involution homographic

with that formed by the pairs (Pl9
P\), and therefore with the one

formed by the pairs (P2 ,
P2')- Now there are four self-corresponding

elements of the homographic cobasal involutions (P2 ,
P2 )

(P3 ,
P3

7

)-

To each of these self-corresponding points corresponds a point P0

such that through P0 pass two tangents belonging to corresponding

pairs of mates in the original involution pencils. Conversely to
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every such point P0 corresponds a self-corresponding point of the

involutions (P2 > ^Y) (^3 * &%)• But the points P0 through which

pass corresponding tangents of the original pencils lie on the product

of the pencils. Any straight line u therefore meets such a product

in four points. Hence the locus is a curve of the fourth degree.

If one of the common tangents is self-corresponding it is part

of the locus. The latter then breaks up into this line and a cubic.

If a second common tangent is self-corresponding the locus breaks

up into two straight lines and a conic. The case where three common
tangents are self-corresponding has already been discussed in

Art. 191. The locus then breaks up into the four common tangents.

Reciprocating the above we see that the product of two homo-

graphic ranges of the second order is an envelope of the fourth

class. The student will have no difficulty in tracing the degenerate

cases when one, two, or three points are Nelf-eorresponding.

EXAMPLES XIIa

1. If [p\ [p'Y be two homographic pencils of the first and second orders

respectively having a self-corresponding ray a which touches the base s

of [p']
2 at A ;

and if u be any straight line in the plane, and up— P, ap'—P':
prove that PP' envelops a conic which touches s at A.

2. If two given homographic pencils of the first and second orders respec-

tively have a self-corresponding ray, show how to construct the two inter-

sections of their product with any straight line.

3. If two given homographic ranges of the first and second orders respec-

tively have a self-corresponding point, show how to draw the two tangents

to their product from any point.

4. From a point O a ray OP is drawn to meet a fixed straight line l at P.

If O' be the point of contact of a tangent from 0 to a fixed conic and O'P
meet the conic again at P'f

prove that the locus of the intersection of OP
and the tangent at P' is a conic.

5. P, Q are two points on a tangent tb a conic s. From P, Q tangents p, q
are drawn to s, meeting at R. If PQ be of constant length, find the locus

ofP.

6. Through a fixed point 0 a ray is drawn to meet a given circle at P.

Find the envelope of a straight line through P which makes a constant angle

with OP,

7. Show that if two conics have double contact, any tangent to either

determines on the other ranges homographic with each other and with the

range described by the point of contact.

8. Two conics touch at A and B. A chord PQ of one conic slides on
the other. Show that the cross-ratio of the four points A , B, P, Q is constant.

9. P is a point on a conic s ; from P a tangent is drawn to a conic t which
has double contact with s to meet s again at P

1 ; from Px another tangent

is drawn to t to meet s again at P 2 : and so on. After n operations we reach



HOMOGRAPHIC PLANE FORMS 249

a point Pn by a chain of tangents. If the chain of tangents slide round U
prove that the ranges [P] 2

, [PJ 2
, [P2]V..[Pn]

2 are ah projective and have
common self-corresponding points. Prove also that if for one position

of P (other than a point of contact of s, t) Pn coincides with P, it will do so

for all positions of P.

Deduce that if a polygon of n sides exist which can be inscribed in a conic s

and circumscribed to a conic t having double contact with s, an infinite

number of such polygons exist.

10. A straight line meets a conic at A, B. On AB points P, Q are taken
so that the cross-ratio {ABPQ} is constant. From P and Q tangents are

drawn to the conic meeting at R. Show that R lies on either of two fixed

conics having double contact with the original conic at A and B.
[Project A , B into the circular points.]

1 1 . Prove that a variable circle which cuts two fixed circles at right angles

determines on these circles two hoinographic involutions.

12. 8V s
2
are two conics, u a fixed tangent to av From a point Q0 of u

tangents Q0Qv Q0Q 2
are drawn to sv s 2 . 0 lf 0 2 are fixed points on av s2

respectively : O
xQ l9 0 2Q 2

meet at Q. Show that the locus of Q is a cubic

having 02 for a double point and construct the proper tangents to the cubic

at 0 2 .

13. If in two homographic involution pencils of the first order the join

of the vertices 0, O' is a double ray of each pencil and self-corresponding,

prove that the remainder of the product is a conic with regard to which O, 0

'

are conjugate points.

[For the other double ray through 0 meets its corresponding pair in the

points of contact of that pair and so is the polar of 0'.]

14. A cubic curve is given as the product of a pencil of the first order

and a homographic pencil of the second order. Given the vertex of the

pencil of the first order, the base of the pencil of the second order and three

points on the cubic, show how to construct the cubic and prove that there are

eight solutions.

15. Prove the following construction for the tangent to a cubic with a

double point O at any point P on it, given any other point U on the cubic

and the points of contact A , B of the tangents from U to the cubic.

Let the conic passing through 0 and touching IIA, UB at A> B meet
OP at Q. Let the tangent at Q to this conic meet UA, UB at C and I).

Then the tangent at P to the conic through 0 , U, C, D , P is also the tangent

to the cubic.

16. If S be a double point on a cubic, 0 another fixed point on the cubic,

OPQ a ray through 0 cutting the cubic again at P, Q, show that SP, SQ are

mates in an involution.

Hence show that if 0, A, B are collinear, and if 0, C, D are collinear, the

locus of the points of contact of tangents from 0 to all cubics having a common
double point and passing through 0, A, B, C, D consists of two straight lines

through the double point.

17. Show that the converse of Art. 203 is not, in general, true, that is,

every quartic with two double points Ol9 02 cannot be obtained as the product

of homographic involution pencils with vertices 0lt 0 2 .

18. Prove that the product of two pencils of the first and second orders

respectively, which are homographic and have two self-corresponding rays,

is a straight line touching the base of the pencil of the second order.
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19. Show that, through each of the vertices Ov 0 2 of two homographic in-

volution pencils, four tangents can be drawn to the quartic curve which is the

product of these involutions.

20. If Ov 02 are the vertices of two homographic involution pencils, prove
that, if (OtA, G1B) t (0 2A, 02B) are the double rays of these involutions, and
a conic s be drawn through Ol9 02, A, B, then the given involutions are

obtained by projecting from Ol9 02 two homographic involutions on s with a
common centre U, and that the intersections of s (other than O lt 0 2 )

with
the quartic which is the product of the involution pencils lie on the self-

corresponding rays of the homographic pencils through U which determine
the involutions on 8.

21. Prove that any circle through the vertices of two homographic
rectangular involutions meets the quartic which is the product of these

involutions at the four comers of a rectangle.

22. If, in two homographic involution pencils, vertices Ov 0 2 , a double
ray OxA corresponds to a double ray OzA, prove that A is a double point on
the quartic which is the product of the involutions, and that the proper

tangents at A are harmonically conjugate with regard to AO l9 A02 .

23. Show that the hyperbola which is the locus of intersections of tangents

to a parabola making a constant angle a with each other has the same focus

and directrix as the original parabola.

[Show that the points of contact of the tangents from O , O ' to the parabola
lie on the hyperbola.]

24. Prove that the product of two homographic involutions of tangents

to the same conic is, in general, a curve of the fourth degree, together with
four straight lines ; but that, if the homography between the two given
involutions is itself involutory, the product consists of four straight lines and a
conic counted twice.

25. If u and v are two tangents to a conic k whose axes are x, y, and are such
that u makes with x, y angles equal to those which v makes with y, x, but v
are not at right angles, prove that the locus of uv is a rectangular hyperbola
whose vertices are the foci of k.

EXAMPLES XIIb

[The axes of co-ordinates are rectangular.]

1. 0 is a point on a circle of radius 2 inches, of which 0 is the centre ; U is

a point on the tangent to the circle at 0, distant 3 inches from 0. V is a
point on the internal bisector of the angle 000, distant 5 inches from 0.

P is a variable point of the circle and UP meets OC at Q, VQ meets OP at R.

Trace the locus of P, and find where it is met by the diameter of the circle

perpendicular to OC, Show that this locus has a cusp at 0.

2. The points A x (0, 2) and A 2 (3, 0) are corresponding points of two
homographic ranges on the ellipse

of which #+ 2y=6 is the cross-axis.

Construct by tangents the product of these ranges.

3.

U is a point on a circle of radius 2 inches and centre 0, and 0 is a point
outside the circle, at a distance of 3 inches from 0, on a diameter of the circle
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perpendicular to the diameter through U. O is the centre of an involution
on the circle, and a ray through U perpendicular to the join of two mates in
the above involution meets the circle at P.
Find the real self-corresponding point of the range [P] 2 and the involution.

What are the imaginary self-corresponding points ?

4. An involution and a range on a straight line are homographic, the
homography being defined as follows :

The double point A(x— 2) of the involution corresponds to P(x= 3*5);
the double point B(x— — 2) corresponds to Q(x— -7/6) ; the pair of mates
Ct(x= 1) and C2(a;

= 4) correspond to R(x—l/3).
Construct the self-corresponding points of the involution and the range,

and prove that your construction must lead to the solution of the cubic
equation

x*-2x2 -3x=Q.
5. O is a point on a circle of radius 1*5 inches, and OP, OQ are two rays

through O inclined at a constant angle of 30°. If the tangent to the circle at
Q meet OP at P, construct the locus of R by points.

Find independently the points where this locus meets the lines perpendicular
to the diameter through O and distant 3 inches from O.
Find also the directions of the real points at infinity on the locus.

6. OX, OY are two lines inclined at 45° to one another ; A, B, C are points
in order on OX, such that 0A =AB=BC=l inch ; P, Q are points on OY
such that OP= 1*5 inches, OQ— 2 inches

; AP, BQ meet at U and UC meets
OY at P.
A range on OF is homographic with an involution on OX of which A, B are

double points, and P, Q , P correspond respectively to A , B and the pair of
mates of which C is one.

Construct by tangents the product of the range and the involution and
find the points of contact of the double tangent to the envelope.

7. Two variable rays VP, VQ , at right angles to one another, are drawn
through the point V (0, 2), to meet the circles (x- 3) 2 + y

2— 4 and (x+2) 2

+ y
2= 1 at P and Q respectively. If A is the point (1, 0) on the first circle,

and B is the point ( — 3, 0) on the second circle, and AP, BQ meet at P,
trace the locus of P, and find its intersections with the straight line y— x+1.

8. U is the point (0, 4), P is a point on the line y= 0, V is the point (3, 3)
on the circle (x — 3)

2 + (y — 2)
2—

1 . If VP meet the circle again at Q , and the
tangent at Q meet UP at P, prove that the locus of P is a cubic, and draw it.



CHAPTER XIII

SYSTEMS OF CONICS

206. Ranges and pencils of conics. A set of conics passing

through four fixed points A, B, C, D are said to form a pencil of

conics.

Through any fifth point E of the plane there passes one conic of

the pencil and one only, since five points determine a conic.

The four points A, B,C, D may be referred to as the base points

of the pencil, and as forming its base quadrangle.

The conics touching four fixed lines a, b ,
c, d are said to form a

range of conics.

There exists one conic of the range, and one only, which touches

any given line e of the plane.

The four lines a, b, c, d will be said to be the base lines of the

range and to form its base quadrilateral.

Special cases of pencils and ranges of conics are obtained when

two or more of the four points A
,
B, C, D, or of the four lines a

,
b, c, d,

are coincident.

Thus the conics which touch a line a at one of its points A and

also pass through two other fixed points B and C
,
form a pencil of

conics. Again the conics which touch a at A and touch two other

lines 6, c, form a range of conics.

A particularly important case is when two pairs of points, or two

pairs of lines coincide. Thus the conics which touch a line a at

A ,
and a line b at B

,
form a pencil. But they likewise form a

range. Thus such a system of conics, which touch at A and B,

possesses the properties both of a pencil and of a range of conics.

By Art. 149 they can be projected into concentric circles, and they

possess all the projective properties of such circles.

Again, we may make three points A, B,C coincide. We then have

conics, having three-point contact at A with a given conic s and

passing through a fixed point D . These form a pencil of conics.

Or, if we make three tangents a, 6, c coincide, A being their point of
252



SYSTEMS OF CONICS 253

contact, we have conics having three-line contact (which, by Art. 47

is the same as three-point contact) at A with a given conic s, and

touching a fixed line d. These form a range of conics.

Finally, by making all four points A, B, C, D, or all four lines

a
, 6, c, d

,
coincide, we obtain the set of conics having four-point

contact (or four-line contact) with a given conic s at A, Such a

system of conics is both a pencil and a range, like a system of conics

having double contact (of which it is a particular case).

It is clear that, of the conics of a pencil, three are line-pairs,

namely the three pairs of opposite sides of the base quadrangle.

Similarly, of the conics of a range, three are point-pairs, namely

the three pairs of opposite vertices of the base quadrilateral.

Since by Art. 50 the diagonal triangle of a quadrangle inscribed

in a conic is self-polar for the conic, it follows that the diagonal

triangle of the quadrangle ABCD which is inscribed in all the conics

of the pencil is self-polar with regard to every conic of the pencil.

Clearly the vertices of this triangle are the centres
(
i.e . the inter-

sections of the components) of the three line-pairs of the pencil.

In like manner the diagonal triangle of the quadrilateral abed

is self-polar with regard to all the conics of the range defined by

a
, 6, c

}
d. Its three sides are the lines joining the components of the

three point-pairs of the range.

The above no longer holds good if two or more of the base elements

coincide. In such cases it will be found that there is no proper

diagonal triangle, except when the conics touch at A and B
,
when

the diagonal triangle is indeterminate, being formed by the meet of

the common tangents and by any two points harmonically conjugate

with respect to A and B.

Example

Prove that, if all the base points A, B, C, 1) of a pencil of conics coincide

at O ,
in such a way that AB, CD coincide with a determinate line OX, and

AC, BD coincide with a determinate line OY, the pencil of conics reduces to an

involution pencil of the first order, of which OX, OY are the double rays.

207. Involutions determined by pencil or range of conics

with a straight line or point respectively. Consider any straight

line u not passing through a base point of the pencil. Let P
be any point of u. The conic of the pencil through P meets u

again at one point P', which is therefore uniquely determined

if P be given. Conversely if P' be given P is known. Also,

since P and P' determine the same conic of the pencil, when P
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is taken at P\ P' is at P . The ranges [P], [P'] on u are therefore

connected by a one-one correspondence in which the elements

correspond doubly. Hence they form an involution upon u .

The double points S, T of this involution are the points of contact

of the conics of the pencil which touch u . This enables us to solve

the problem : to draw a conic through four given points A
,
P, C, D

and touching a given straight line u. We see that this problem
has in general two solutions which are real only if the involution

determined upon u by the pencil of conics is hyperbolic.

Three of the conics of the pencil degenerate into the line-pairs

formed by opposite sides of the quadrangle ABCD. They are

(AB
;
CD), (AC ;

DB
), (AD ;

BC). We thus obtain the theorem :

The three pairs of opposite sides of a complete quadrangle
meet any straight line (not passing through a vertex of the quad-
rangle) in three pairs of points of an involution (cf. Art. 95, Ex. 6).

Proceeding on similar lines, or reciprocating the above theorem,

we obtain the result :

If (p, p') be the tangents from a point V not lying on a base line

of the range to any conic of a range, the rays (p, p') form an involu-

tion, of which the double rays s
,

t are the two tangents at U to

the conics of the range which pass through [/.

The problem, to draw a conic to touch four given lines and to

pass through a given point, has therefore in general two solutions.

Three of the conics of the range degenerate into the point-pairs

formed by opposite vertices of the quadrilateral abed. They are

(ab
;
cd), (ac

;
db ), (ad

;
be). The tangents from V to these point-

pairs are the joins of U to the points of the pair. We have then :

The lines joining any general point to the three pairs of

opposite vertices of a complete quadrilateral form three pairs

of mates of an involution pencil.

From the property of the present Article follows at once the

theorem that the orthoptic circles of a range of conics are coaxal.

For consider two such orthoptic circles, intersecting at G ,
H.

The involution of tangents to the system from G has two pairs

of rectangular rays and is therefore rectangular. Thus G lies on
every orthoptic circle of the system. Similarly for H.

Examples

I. Prove that, in general, the condition that two given points S, T are
conjugate with respect to a conic of a pencil determines this conic uniquely.

Discuss the case of exception.

[The intersections of the required conic with ST are the common mates



SYSTEMS OF CONICS 255

of the involution determined by the pencil on ST and the involution of which
S , T are double points. These involutions may coincide (see Art. 210).]

2. Prove that, in general, the condition that two given lines s, t are con-
jugate with respect to a conic of a range determines this conic uniquely.

Discuss the case of exception.

3. The conics k, k' intersect at four points A, B, C, D ; a line Z meets
AB, CD atX, Y respectively, and meets k at P, Q. If P, X be conjugate with
respect to k\ prove that Q, Y are also conjugate with respect to k'.

4. Four given points A, B, C, D lie on a line l

;

and OHJK is any quadrangle
such that GH, JK meet at A, and GJ, GK, HJ pass through B, C, D, respec-

tively. Prove that the intersection ofHK with l is a fixed point, independent
of the particular quadrangle GHJK.

IfE is a fifth given point of Z, show that the second intersection of Z with the

conic EGHJK is also a fixed point independent of the particular quadrangle
GHJK ; and that this conic touches Z if, and only if, (E, A

)

are harmonic with
respect to

(
C, D).

5. The conics of a pencil touch a fixed line Z at A and pass through two
fixed points B, C, Prove that, if a conic of this pencil meets any other fixed

conic k touching Z at A (but not passing through B
,
C) at two other points

P, Q, then PQ passes through a fixed point of BC.

6. Show that a pencil of conics which either (i) have three-point contact

with a fixed conic k at a given point A and pass through a fixed point B> or

(ii) have four-point contact with k at A, determine an involution on a fixed

conic s having simple contact with k at A.

7. Show that the circles on the three diagonals ofa quadrilateral as diameters

have a common radical axis.

[For these circles are orthoptic circles of the point-pairs of the range.]

208. Homographic rafiges and pencils of conics. Two pencils

of conics [Aq], [&2] will be said to be homographic if, given one conic

Aq of one pencil, a conic k2 is uniquely determined by any process

which can be expressed by means of an algebraic correspondence,

and, conversely, when Ic2 is given, Aq is uniquely known.

Thus, if the pencil [Aq] pass through the fixed points A if Blf

C\, Z>x and the pencil [&2 ] pass through the fixed points A 2 ,
B2j C2i

D2 ,
then, if [w

x ],
[

u

2 ] are homographic flat pencils through A if A 2

respectively, k1
is entirely determined if it touches ulf and k2 is

entirely determined if it touches u2 . But u2 are uniquely

related, so that, if k
Y

is given, the tangent to Aq at A
x

is known,

hence w2 ,
and therefore k2i is determined. Thus the pencils [Aq],

[k2] are homographic. Conversely, if two pencils [&J, [<k2] are

homographic, the tangents u lt u2 at base points A it A 2 are

homographic.

It follows that the homographic correspondence between two

pencils of conics is entirely determined if three pairs of corre-

sponding conics (ki, k2 )

;

(Aq", k2 ) ;
(Aq'", k2 ") in the pencils,

18
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are given. For then in the homographic pencils [wj], [u2] we have

three pairs of corresponding rays (uy, u2 ) ;
(uy", u2") ; (ui'"9 u2'"),

and these determine the homographic relation between [mJ, [w2],

and hence between [k{], [&2]*

Again, consider a fixed conic k through four points A, B, C, D,

and the pencils of conics [ky] through Ay, B, C, D and [fc2] through

A 2 ,
B

,
C, D, where Ay, A 2 are fixed points different from A. If

the conics ky, k2 are so related that they both pass through the

same variable point P of k, [&J and [fc2 ] are homographic. For,

if ky is given, its fourth intersection P with k is unique and this

fixes k2 ,
and conversely.

In the same way as for pencils of conics, so ranges of conics

which have a one-one correspondence between them will be said to

be homographic.

In like manner a range of conics may be homographic with a

pencil of conics
;

for example, such a one-one correspondence

is given by associating the conic through four given points A
,
B

, C,

D which touches a variable line u through A with the conic touching

four fixed lines a
, b, c, d which touches the same line u—or which

touches the line v corresponding to u in a pencil of first or second

order homographic with [w].

Again either a range, or a pencil of conics, may be homographic

with any other type of one-dimensional geometric form, or with an

involution.

209. The quartic and cubic derived from pencils of conies-

If [ky[, [&2] be two homographic pencils of conics, these will determine

on a general straight line u two homographic involutions, which

have four self-corresponding points (Art. 200). These self-corre-

sponding points are points of the product of the two pencils. This

product therefore meets any straight line at four points, and so is a

quartic curve. It is clear that the four base points of each pencil

lie on this quartic.

It will now be shown that any quartic q may be derived in

this manner. Take any four points Ay, By, Cy, Dy on q and through

these describe any conic ky. Using the proposition that two curves

of degrees m and n intersect in mn points, k{ will intersect q at four

points P, Q ,
P, S, besides A h By, C

} ,
Dy. Take now a second

conic k2 passing through P, Q, R, S
;
k2 will meet q again at four

points A 2 ,
B2 ,

C2 ,
D2 . Let now T, U be any two other points on q .

Let ky ", ky" be the conics of the pencil defined by the base quad-

rangle AyByCyDy which pass through T, V respectively, and let



SYSTEMS OF CONICS 257

k2 \ k2
"
be the conics of the pencil defined by the base quadrangle

A2B2G2D2 which pass through T, V respectively. The triads

(k1, kx
", kx

") and (k2\ k2 \ k2”) define a homography between

these two pencils of conics, which we now denote by [Aq], [i2].

The product of [Aq], [k2] is a quartic, which necessarily passes

through the eight base points A Xi Bx , Cx> Dx , A2i B2 , C2 , D2 ,

through the intersections P, Q, R, S of the corresponding conics

Aq', k2', through the intersection T of the corresponding conics

Aq", k2 and through the intersection U of the corresponding conics

Aq'", k2
n

• These give fourteen points on the quartic locus. But

the general equation of a quartic contains fifteen coefficients, whose

fourteen ratios determine the quartic. Thus through fourteen

points only one quartic can in general be drawn. As, however,

two quartics intersect in sixteen points, it follows that there must

exist sets of fourteen points on any quartic through which more

than one quartic can be drawn. We notice, however, that, for this

case of exception to arise, there must be some relation between

the fourteen points. But, in this case, we can obviously vary

arbitrarily one of the points, say U, without affecting any of the

thirteen others, and therefore arrange so that the case of exception

shall not arise. Thus, in general, the quartic product of [Aq], [&2]

is identical with q.

It will be noticed that this does not necessitate that the quartic

considered should have double points, as in the case of a quartic

obtained as the product of homographic involution pencils of the

first order.

Note also that the twenty points obtained from the eight base

points of two pencils of conics and the twelve intersections of any

three pairs, each consisting of one conic from each pencil, lie on a

quartic.

If now we consider a cubic c and proceed in a similar manner,

taking four arbitrary points A, B
} C, D on c and a conic k

f

through

them, k
f

will meet the cubic at two other points P, Q . Join

PQ—u\ meeting the cubic again at Z. If R, S be two other

points on the cubic, and we denote by k", k
nt

the conics ABCDR9

ABCDS respectively, and by u", u the lines ZR, ZS respectively,

then if a homographic correspondence is established between the

pencil of conics [k] through A
,
P, G

,
D and the pencil of rays [u]

through Z, in which u\ u”
,
u,n correspond to k\ k'\ k"

r
respectively,

the product clearly passes through the nine points Z, A, B, C9 D,

P, Q, R, S. Now nine points, in general, determine a cubic ;
here

again, since two cubics meet at nine points, cases of exception may
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arise, which may be removed by varying R or S. Thus, generally,

the product of [k] and [u] is the original cubic c.

We obtain at once the following important theorem on the cubic :

if, through four given points A, B, A\ B' of a cubic a pencil of conics

be drawn, and any conic of the pencil meets the cubic again at

points P, Q, the lines PQ pass through a fixed point Z of the cubic.

Take the line-pairs (.AB ,
A'B') and (AA\ BB') as two of the

conics. Let them meet the cubic again at C, C' and at X,
Y

respectively. Then CC XY meet at Z on the cubic. Thus

:

If any two straight lines meet a cubic at A, B, C
;
A\ B\ C'

respectively, and if AA\ BB\ CC

'

meet the cubic again at

X
,
Y, Z, then X ,

Y, Z are collinear.

As a particular case let the two straight lines coincide. Then the

tangents at the three points where a line meets a cubic intersect

the cubic again at three collinear points. If the line is the line at

infinity, we have the result that the intersections of a cubic with its

asymptotes are collinear.

It should be noticed that the point Z can be arbitrarily selected

on the cubic, instead of the four points A, B, C, D. For we can

draw any line through Z meeting the cubic again at P, Q and

through P, Q a conic k' meeting the cubic at A, B, C, D, and then

proceed as before.

In a similar manner we can derive the general envelope of the

fourth class from two homographic ranges of conics and that of the

third class from a range of conics and a homographic range of

the first order.

Examples

1. Show that a quartic determined by two homographic pencils of conics

or a cubic determined by a pencil of conics and a homographic pencil of first

order cannot have double points unless one of the pencils of conics reduces

to an involution pencil of the first order.

2. Show that through any 13 given points on a quartic a pencil of quartics

can in general be drawn, which meets the original quartic at three other fixed

points, and that, through any other given point of the plane there passes

just one quartic of the pencil, in general.

3. If kv sv s 2 be four conics, prove that through the 16 intersections

of type SK pass an infinite number of quartics, and that 10 of these 16 points

may be arbitrarily assumed.

4. Prove that, if kv k2 be two conics of a pencil through A, B, C, D, and
ult u2 two rays of a pencil of the first order vertex 0 ; and if u1

meets kx

at Pv Qv and u 2 meets k 2 at P 2, (? 2 , an infinite number of cubics can be

described through the nine points A, B, C9 D , Pv P2 , Qi> 0 2 » 0

;

and that

through any general point of the plane there passes just one of these cubics.
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210. Points conjugate for a pencil of conies. If two points

S, S' are conjugate for two conics ky , k2 of a pencil, they are con-

jugate for every conic of the pencil. For let kif k2 meet SS' at

Pl9 Qi ;
P2 , Q2 respectively : then, since S, S' are harmonic with

respect to Pl5 Qy
and P2> Q2 , they are the double points of the

involution determined on SS' by the pencil (Art. 207). Hence, if

any other conic k of the pencil meets SS' at P, Q, these latter are

mates in the above involution, and S
,
S' are harmonic with respect

to P, Q and therefore conjugate for k.

Clearly there must be in general one pair of points conjugate for

the pencil of conics on every straight line l of the plane
; they

are the double points of the involution determined by the pencil

upon l.

To any point S of the plane corresponds, in general, one point S'

and one only. For let s
y ,

s2 be the polars of S for k
y ,

k2 respec-

tively. Then S' must be a point common to $y> s2 . In general

there is only one such point. The only exception arises when sy and

s2 coincide, in which case S has the same polar s for all the conics of

the pencil. If this happens, then by joining S to a base point A of

the pencil and producing to A', where AA' is harmonically divided

by S and s
,
we obtain a point A' which lies on every conic of the

pencil, and so must be another of the base points, P, C or D.

Such points S then, which have the same polar with respect to

every conic of the pencil, are necessarily at an intersection of

opposite sides of the base quadrangle. It follows that, if this quad-

rangle be not degenerate, the pencil of conics can have only one

common self-polar triangle, namely the diagonal triangle of the base

quadrangle, as in Art. 206.

If, however, the conics touch at A and pass through B and O',

there are only two points S having this property, namely A and

the intersection of BC and the tangent at A. If, in addition, B or C
,

or both, coincide with A
,
so that the conics have three- or four-

point contact at A ,
then A is the only point which has the same

polar for all the conics. But if C coincides with B, as well as D
with A, so that the conics have double contact, S may be either

the intersection T of the tangents at A and B
,
or any point of AB .

In this case any two points U , V of AB which are harmonically

conjugate with respect to A, B are conjugate for the pencil and

every triangle TUV is self-polar for the pencil.

Returning now to the general case, we see that the polars s of S
for the conics of the pencil \k] form a pencil [s] of the first order
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with vertex S'. Clearly if k is given, s is uniquely determined.

Conversely, if s is given and SA is joined, we find on SA, as

before, a point A' which must lie on k. Since by hypothesis S is

not now a vertex of the common self-polar triangle, A' does not

coincide with any of the base-points. The conic k is now uniquely

determined by the five points A, B, C, Z), A'. It follows that

the polars of S form a pencil of first order homographic with the

given pencil of conics.

We find an immediate application of this result in the case of

the cubic. If S is any point of a cubic c, we have seen that the

cubic is obtainable as the product of a pencil [p] of the first order

through S and a homographic pencil [&] of conics. If now s is the

polar of S for the conic k
,
[s]‘a [&] by what has been proved above.

Thus [Y] 7\[p] and sp=R describes a conic through S, S'. But if p
meets k at P and Q, R is harmonically conjugate to S with respect

to P and Q. Now P and Q are points on the cubic. Thus if through

a point S of a cubic a chord SPQ be drawn, meeting the cubic

again at P, Q, the locus of the point harmonically conjugate to S
with respect to P and Q is a conic passing through S. This is

known as the polar conic of S with respect to the cubic.

Examples

1. Prove that if two conics of a pencil have their axes parallel, all the

conics of the pencil have their axes parallel and one of these conics is a circle.

2. A coaxal system of circles being given, show that
:

(i) Any given straight

line is touched by two circles of the system ; (ii) The polars of a given point

with respect to the circles of the system pass through a fixed point.

3. A pencil of conics has three-point contact with a circle at A (AT being

the common tangent) and passes through a point B on the circle. Prove
that the axes of the two parabolas of the pencil are parallel to the internal

and external bisectors of the angle TAB.

4. Prove that the polar conic of a point 0 on a cubic touches the cubic at 0.

5. Show that from a point 0 on a cubic four tangents can in general be

drawn to the cubic, and that the conic through 0 and the four points of contact

touches the cubic at 0.

211. Lines conjugate for a range of conics. Proceeding in a

similar manner, or reciprocating the results of the last Article, we
can show that

:

If two lines s, s' are conjugate for two conics kY ,
k2 of a range,

they are conjugate for every conic of the range.

Two such lines pass, in general, through any given point P of the

plane.

To any given line 8 of the plane corresponds in general one line s'
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and one only, which is conjugate to s for all the conics of the range,

except when 8 has the same pole for all the conics of the range, in

which case s is a diagonal of the base quadrilateral, provided the

latter is non-degenerate.

The poles of a given line s with respect to the conics of a range

form a range of the first order homographic with the range of conics.

If the base quadrilateral is non-degenerate, its diagonal triangle

is the only common self-polar triangle of the range.

If, however, the base lines a and d coincide, the only lines which

have the same pole for the conics of the range are a and the line

joining be to the point of contact of a . If three or four of the

base lines coincide with a
,
a is the only line having the same pole

for all the conics. In either of the above cases there is no proper

common self-polar triangle.

If the base lines coincide in pairs, d with a and c with b, we have

conics having double contact, a case already discussed.

212. The eleven-point conic. We proceed to find the locus of

the point S' conjugate to S for a pencil of conics, when S describes

a straight line q (Fig. 69). Let s2 be the polars of S with respect
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to two conics k\ 9 k2 of the pencil. Then S' **Si$2 . If Ql9 Q2 be the

poles of q with respect to kX9 k2) s l9 s2 describe pencils of the first

order with Qx , Q2 as vertices and by Art. 52, [/S]7r[*
1
]7r(>2 ]. Hence

S' describes a conic (Art. 41) passing through Qi9 Q2 .

This conic is known as the eleven-point conic of q .

For let EFG (Fig. 69) be the common self-polar triangle of the

pencils. Then E is conjugate to the point of q in which q is cut by

FG. Therefore E is a point on the locus of S'
: similarly F

,
G

are points on this locus. Again the two double points T, V of

the involution determined by the pencil on q ,
being conjugate to

one another, are on the locus.

Let H
,
I, J,

K, L
,
M be the points at which q meets the six

sides of the quadrangle ABCD. Then the harmonic conjugates

H'
9
F

,
J', K\ L M'

of H
,
I, J, K, L, M respectively with regard

to the two vertices on the corresponding sides of the quadrangle

must lie on the locus. For clearly CD being a chord of all the

conics of the pencil (.H ,
H') are conjugate with regard to all such

conics.

The locus of S' thus passes through these eleven points.

Since the eleven-point conic of q passes through the two poles

Qi , Q2 of q with regard to k l9 k2 ;
and kl9 k2 are any conics of the

pencil, the eleven-point conic passes through the poles of q with

regard to all the conics of the pencil.

It is therefore also the locus of the poles of q with regard to the

conics of the pencil.

213. The eleven-line conic. Reciprocating the above theorems

we obtain the following results.

The envelope of lines conjugate to the rays of a pencil through a

point Q with regard to a range of conics touching a
,
b

, c, d is a

conic which touches : (1) the three sides of the diagonal triangle of

the quadrilateral abed
; (2) the two lines through Q conjugate with

regard to the range, i.e. the two tangents at Q to the two conics of

the range through Q ; (3) the six harmonic conjugates to the rays

joining Q to the vertices of the complete quadrilateral abed
, taken

with regard to the two sides of the quadrilateral through each vertex.

This conic is also the envelope of the polars of Q with regard to

the conics of the range.

Examples

1. If a pencil of conics circumscribe a rectangle, show that the eleven-point
conics are rectangular hyperbolas.
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2. Prove that the circle through the feet of the perpendiculars from the

vertices of a triangle upon the opposite sides passes also through the middle
points of the sides' and through the middle points of the three lines joining

the orthocentre to the vertices of the triangle.

Show that the centre of this circle bisects the line joining the orthooentre

to the circumcentre.

3. Show that the eleven-point conic breaks up into two straight lines if,

and only if, q passes through a diagonal point of the base quadrangle, and
that, in this case, one straight line is the locus of the poles of q and the other is

the locus of the points conjugate to points of q for the pencil.

4. Prove that the eleven-point conics of the lines u through a given point 0
form a pencil of conics homographic with [V).

214. Geometrical constructions for common self-polar triangle

Of two conics. If two real conics intersect in four real points A
,
B,

C
,
D

,
or else lie entirely outside each other, so that they have four

real common tangents a, b, c, d
y
their common self-polar triangle

is at once constructed, being the diagonal triangle of the quadrangle

ABCD or of the quadrilateral abed.

If, however, two of the points of intersection, say C and D
,

are conjugate imaginary, the other two A and B being real, the

line CD is a real straight line. The vertex E (Fig. 69) of the

self-polar triangle is therefore real and its polar FG with regard

to the two conics is also real. But F and G cannot be real : for

if F were real, AF would be a real line and its meet C with CD
would be a real point, which is against the hypothesis. In this

case, then, two vertices of the common self-polar triangle, and also

their opposite sides, are imaginary.

If all the points of intersection are imaginary they fall into two

conjugate imaginary pairs, say A
,
B and C

,
D. Then AB, CD

are real lines and their meet E a real point. Also A being con-

jugate imaginary to B and C conjugate imaginary to D
,
the line

AC is conjugate imaginary to BD by Art. 138, and thus their

intersection F is real. Similarly G is real. Hence when all four

points of intersection are imaginary, the common self-polar triangle

is real.

Proceeding similarly we see that the common self-polar triangle

is real when the four common tangents are either all real or all

imaginary : it is imaginary when two of the common tangents are

real and two imaginary.

Comparing these results with the previous ones we observe

that if two conics have only two real intersections they have only

two real common tangents
;

but they may have
: (1) four real
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intersections and four real common tangents, e.g. two conics

having their four real intersections on the same branch of each

;

(2) four real intersections and four imaginary common tangents,

e.g. two conics having real intersections on both branches of one

of them
; (3) four imaginary intersections and four real common

tangents, e.g. two ellipses lying entirely outside one another

;

(4) four imaginary intersections and four imaginary common
tangents, e.g. one conic lying entirely inside another.

In case (4) the geometrical construction for the diagonal triangle

fails entirely. We can then proceed as follows. Take any two

lines p and q. Construct their eleven-point conics as in Art. 212.

These two eleven-point conics intersect in four points, namely the

vertices E, F, G ,
of the common self-polar triangle and the point

conjugate to pq with regard to both conics. The latter point

being always real, we get a new proof that one of the vertices of the

self-polar triangle is always real.

215. Given two conics of a pencil, to construct any conic of

the pencil. Let s, t be two given conics
;

it is required to construct

the conic of the pencil of which s , t are members, which passes

through a given point P.

If s
}

t intersect at four real points, the conic is immediately

constructed by PascaFs Theorem.

In the more general case, if P lies inside one of s, t or if it lies

outside both, but one of the tangents from P to either of these conics

meets the other in a pair of distinct real points, there must be lines

through P which meet both s and t in real points. Four more

points of the required conic can be constructed by finding the mate

of P in the involution determined on a line through P by the pairs

of points in which that line meets s and t. The required conic may
then be constructed by PascaFs Theorem.

If neither tangent from P to each of s
,

t meets the other in real

points, then s, t must lie entirely outside each other, and so have

four distinct real common tangents.

In this case a real common self-polar triangle of s
}

t can be

constructed
;

and three other points Q, P, S on the required

conic are known, on the lines joining P to the vertices of this

triangle, being the harmonic conjugates of P with respect to a

vertex and a point on the opposite side. The tangent at P is

also determined, for it passes through the point conjugate to P
for the pencil, and this, by Art. 210, is the intersection of the

polars of P for s and t. We have now four points P, Q, R, S and
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the tangent at one of them P, and the conic can be constructed as in

Chapter V.

The last construction holds even if P lies on a common tangent

to s , t. If, however, P lies on two common tangents to s, t, then P
lies on a side EF of the common self-polar triangle EFG, and only

one other point Q is obtained from the above construction
;

this

point Q is the harmonic conjugate of P with respect to E, F and

is the meet of the other two common tangents of s, t

.

Since the

points of contact of s, t with any one of their common tangents are

double points of the involution determined by the pencil of conics

on these tangents (Art. 207) the four harmonic conjugates of P, Q
with respect to these points of contact are points on the required

conic, on which we now have six points.

In the special case where the conics s
,

t touch externally at A,

and P lies on their common tangent at A, the required conic must

touch AP at A and pass through P. It must therefore break up

into a line-pair, one component of which is AP. If now any straight

line u be drawn, which meets both s and t at real points, and also

meets AP at Q, then the mate of Q in the involution in which the

intersections of u with s and t are pairs of mates is a second point Q'

of the line pair, lying on the component other than AP. By
taking a second position of u we find a second point Q' and the

join of these points Q' gives the second component of the line-pair.

If s
,

t have double contact externally and P lies on both common
tangents, the conic through P clearly reduces to the line-pair formed

by these common tangents.

Example

Show how to construct the conic of a range, which touches a given straight

line, when two conics of the range are given.

216. Conics having double contact. When two conics touch

at A and B they define a pencil of conics touching the two given

conics at A and B. The pole E of AB is the same for all the conics
;

and if F, G be any pair of points on the common chord of contact

harmonically conjugate with regard to A, B, EFG is a common
self-polar triangle of the pencil of conics. There is thus an infinity

of common self-polar triangles. The three line-pairs of the system

degenerate into the doubled line AB, occurring twice over, and the

pair of common tangents EA, EB.

Also such a pencil of conics may be looked upon as forming

a range, the four common tangents being coincident in pairs.
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Such a set of conics possesses the properties both of the pencil

and of the range. Thus to any point there is a conjugate point and
to any line a conjugate line, with regard to all the conics of the set.

Hence the locus of poles of any straight line with regard to the

conics of the set is a straight line and the polars of a point pass

through a point. It is of interest to see how these occur as

degenerate cases of the eleven-point and eleven-line conic

respectively.

Consider any point Q (Fig. 70) on a straight line q. Let q meet

AB at R and let R' be the harmonic conjugate of R with respect to

E

Fig. 70.

A
,
B. Since R, R' are conjugate with regard to all conics of the

set, and E
}
R are conjugate with regard to all conics of the set,

R is the pole of ER' ( =#') with regard to all the conics of the set.

And since q passes through R
, q

' is the locus of poles of q with

regard to the conics of the set. On the other hand consider the ray

harmonically conjugate to EQ with regard to EA, AB. Let it

meet AB at Q', and let EQ meet AB at T. Then Q'ET is a self-

polar triangle for all the conics of the set, or Q' is conjugate to Q
with regard to the set of conics.

The eleven-point conic corresponding to q therefore breaks up
into two straight lines, of which one AB is the locus of points

conjugate to points of q ,
and the other ER' is the locus of poles.
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Thus these two loci, which are the same in the general case, are

now separated. In like manner the eleven-line conic corresponding

to Q breaks up into the point E which is the envelope of lines

conjugate to lines through Q,
and the point Q' which is the envelope

of polars of Q with regard to the set of conics.

Examples

1. If E is the common centre of a set of concentric circles, prove directly :

(i) that P is conjugate to the point P/c0
at infinity in the direction per-

pendicular to EPy for every circle of the set
;

(ii) that any line u is conjugate

for every circle of the set, to the line u' perpendicular to u through E.

Hence deduce the results of Art. 216.

2. Prove that the product of pencils of first order conjugate for a
pencil of conics having double contact at A, B is a conic passing through
A and B.

217. Construction of conics through three points and touching

two lines. Let it be required to construct a conic to pass through

three points A, B, C and to touch two lines p, q (Fig. 71). Let the

conic required touch p, q P, Q respectively.

Consider the involution determined on BC by the pencil of conics

having contact with p and q at P and Q. If p , q meet BC at P1} Q\

then Pj, Qi are mates in this involution, for the pair p, q is a conic

of the pencil. Also B, C are mates in this involution. The double

points of this involution are therefore determined. But since PQ
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doubled is a conic of the pencil, the point where PQ meets BC is

one of the double points of this involution.

In like manner PQ passes through one of the double points

of the involution on AC determined by the pairs of mates (A, C)

(Jf
>

2 , Q2 ) ;
P Q% being the points where p, q meet AC.

There are thus four possible positions of PQ corresponding to

the four lines joining the double points of these two involutions,

and so there are four solutions to the problem proposed.

The reader may verify that if PQ passes through double points

of the involutions on BC, CA
,

it will also pass through a double

point of the corresponding involution on AB.

Reciprocating the above construction we obtain a construction

for the conics through two points and touching three lines. This,

like the above, has in general four solutions.

Examples

1. Prove that the problems : to draw a conic touching two given real

lines and passing through three given real points, and to draw a conic touching

three given real lines and passing through two given real points have either

four real solutions or none.

2. By projecting the circular points at infinity into any two conjugate

imaginary points, prove that there are always four real conics passing

through two conjugate imaginary points and touching three real lines.

218. Properties of confocal conics. If two of the opposite

vertices of the quadrilateral abed are the circular points at infinity

12, O', the range of conics inscribed in this quadrilateral becomes a

system of confocal conics. The involution of tangents through any

point P has thus the circular lines through P for mates. Its double

rays are therefore at right angles (Art. 141), and they bisect the

angles between any pair of mates (Art. 101). Such a pair of mates

are the lines joining P to the two real foci S, S'

.

We get the series

of theorems

:

Through any point P of the plane two conics of a confocal

system can be drawn and these cut at right angles.

The tangent and normal at any point P of a conic bisect the angles

between the focal distances.

The two tangents from P to a conic are equally inclined to the

rays joining P to the real foci.

Also, from the property above that double rays are at right

angles, conjugate lines with regard to a system of confocal conics

are perpendicular. Hence

:

The locus of the poles of any straight line q with regard to a
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system of confocals is the normal at Q to the conic of the system

touching q, Q being the point of contact of q with this conic.

The theorem of Art. 181 that coaxal circles reciprocate, with

respect to a limiting point into confocal conics, has an instructive

interpretation from the point of view of pencils and ranges of conics.

Coaxal circles are clearly a special case of a pencil of conics,

since they pass through O, O' and through two other fixed points,

say A and B.

The three line-pairs of the system are

(.AB , QO'), (A O, SO'), (AQ\ SO).

The first consists of the radical axis and the line at infinity
;

the last two are the circular lines through C and Z), where C and D
are the points (.40, SO') and (AH', SO) respectively, that is, they

are by Art. 140 point-circles at C and D.

The points C, D are the limiting points of the system of coaxal

circles. They are imaginary if A, B are real, but real if A, B
are conjugate imaginary, that is, if the radical axis does not cut

the circles in real points
(cf. Art. 113).

Consider now the effect of taking polar reciprocals of the coaxal

circles with regard to any circle of centre C. We obtain a range of

conics touching the four polars of A, B, O, O' with regard to such a

circle.

Now CO being the tangent at O to the circle whose centre is

C, the pole of CO with regard to this circle is O. Hence the polar

of A (which lies on CO) passes through O. Similarly the polar of

O' is CO' and the polar of B passes through O'. Thus A, B, O, O'

reciprocate into lines OF, Q'F, OC, O'C. The circles therefore

reciprocate into conics having C, F for foci.

219. Properties of rectangular hyperbola. If two conics

of a pencil are rectangular hyperbolas the points O, O' are conjugate

with regard to two conics of the pencil. Therefore they are con-

jugate with regard to all the conics of the pencil. These are therefore

all rectangular hyperbolas. Thus every conic through the inter-

sections of two rectangular hyperbolas is a rectangular hyperbola.

If A, B, C, D be the four intersections of two rectangular hyper-

bolas, the line-pairs are also rectangular hyperbolas, therefore they

are perpendicular. The quadrangle ABCD is therefore such that

pairs of opposite sides are perpendicular. Any one of its four

vertices is the orthocentre of the triangle formed by the other three.

It follows that any conic through the three vertices of a triangle
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and its orthocentre is a rectangular hyperbola (cf. Art. 93). Con-

versely the orthocentre of any triangle inscribed in a rectangular

hyperbola lies on the curve. For if ABC be the triangle and the

perpendicular through A to BC meet the hyperbola again at D,

the pair AD, BC being a rectangular hyperbola, every conic through

A, B
,
C, D is a rectangular hyperbola. But CA, BD is such a conic,

therefore CA, BD are perpendicular, or D is the orthocentre of ABC .

220. Centre loci. The theorems of Arts. 211, 212 give the

following results when q is the line at infinity.

The locus of the centres of a pencil of conics through four

points A, B, C, D is a conic whose asymptotes are parallel to the

axes of the two parabolas through the four points and which

passes through the vertices of the diagonal triangle of the quad-

rangle ABCD and the middle points of the six sides of this

quadrangle.

Incidentally we have proved the theorem :

The six middle points of the sides of a complete quadrangle

lie on a conic which circumscribes its diagonal triangle.

The locus of the centres of a range of conics touching four lines

a, b, c, d is a straight line. Since the mid-points of the three point-

pairs are evidently centres, they lie on this locus. Hence, inciden-

tally : the middle points of the three diagonals of a quadrilateral are

collinear.

Examples

1. Show how to construct the centre of a conic touching five given lines.

2. The centre of the locus of centres of conics of a pencil is the centroid of

the quadrangle defining the pencil.

[For the centre-locus passes through the mid-points P, Q , R, S of AB,

BC, CD, DA. But PQRS is readily shown to be a parallelogram. Hence

the intersection of PR, QS

,

which is the centroid of the quadrangle, is also

the centre of the centre-locus.]

3. Prove that the asymptotes of any conic of a pencil are parallel to

harmonic conjugates with respect to the asymptotes of the centre-locus of the

pencil.

4. The conics of a pencil touch a given straight line l at a point A of it,

and pass through two other points B and C. Show that the centre-locus

passes through A, the middle points D, E, F of BC, CA, AB respectively and

the meet H of BC and l

;

and also that the tangent at A is harmonically

conjugate to l with respect to AC, AB, and the tangents at E and F are

parallel to l.

6. The conics of a pencil have four-point contact at a point A. Prove

that their centres lie on a line through A.

221. Locus of foci of conics of a range. The involutions of

tangents from two different points P, Q of the plane to the conics
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of a range are clearly homographically related, since either tangent

through P determines uniquely the conic of the range and therefore

the pair of tangents from Q : and the converse is true if we start

from Q.

These homographic involution pencils, however, have a self-

corresponding ray, namely PQ, for PQ is a tangent from either

P or Q to the conic of the range which touches PQ .

The locus of intersections of tangents from P and Q therefore

reduces, by Art. 203, to a cubic through P and Q.

If now P and Q be taken at 12, 12' this locus becomes the locus of

the foci of the conics of the range.

The foci of the range therefore lie on a cubic through 12, 12'.

Such a cubic is known as a circular cubic.

If P and Q lie on any one of the three diagonals of the quadrilateral

abed which defines the range, the tangents from P to the corre-

sponding point-pair coincide along PQ
;
and so do the tangents

from Q to the same point-pair. The homographic involutions from

P and Q have therefore a self-corresponding double ray. Their

product therefore reduces to a conic with regard to which P and Q
are conjugate (Exs. XIIa, 13).

If P, Q be 12, 12', the corresponding diagonal of the quadrilateral

is at infinity
;

the quadrilateral is a parallelogram. Hence the

locus of the foci of all conics inscribed in a parallelogram is a

rectangular hyperbola (for 12, 12' are conjugate with regard to it,

by the above).

If the quadrilateral, instead of being a parallelogram, is sym-

metrical about a diagonal, this diagonal is obviously part of the

locus. Since it does not pass through 12, 12' the cubic breaks

up into this diagonal and a conic through 12, 12', that is, a circle.

Since [see Ex. 2, Art. 119) the components of a point-pair are

also its foci the rectangular hyperbola which is the locus of foci of

conics inscribed in a parallelogram circumscribes the parallelogram,

and the circle which is the corresponding locus for the quadrilateral

symmetrical about a diagonal passes through the four vertices

not on this diagonal.

222. The hyperbola of Apollonius. Let s be a conic, c any
circle in its plane, with centre 0 ;

c meets s at four points A, B,C, D.

Let h be the centre-locus of the pencil of conics through A, B,C, D .

Clearly c meets the line at infinity at £2, 12'. Let s and k meet the

line at infinity at I°°, J00 and at A°°, Y00 respectively. Then A00
,

Y00 are the double points of the involution defined by the pairs of
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mates /°°, J00 and O, O'. Thus X00
,
Y00 correspond to perpendi-

cular directions harmonically conjugate to those of 700
, J00

,
that is,

they bisect the angles between the latter, namely between the

asymptotes of s : hence they are parallel to the axes of s. Accordingly

& is a rectangular hyperbola passing through the centre of s and the

point 0 ;
it is called the hyperbola of Apollonius for 0.

Now k meets s at four points P, Q , R ,
S. At one of these four

points, say P, draw the tangent to s, meeting the line at infinity at

T00
. By the property of the centre-locus, the point conjugate to P

for the pencil of conics through A, B
,
C, D is on the line at infinity,

and since PT00 touches a conic of the pencil, the point conjugate to

P for the pencil also lies on PT00
. Hence it must be T00

.

Since T00
is conjugate to P for all conics through A, B, C, D, it is

conjugate to P for the circle c. Hence the polar of T00 with regard

to the circle, that is the line through 0 perpendicular to the direction

of P 00
,
passes through P, and OP is normal to s at P. Similarly

OQ
,
OR, OS are normals to s.

Thus from any point 0 four normals, real or imaginary, can

be drawn to the conic, of which the feet are the intersections

of the conic with the hyperbola of Apollonius for 0.

Note that any hyperbola k whose asymptotes are parallel to the

axes of 8 and which passes through the centre C of s is a hyperbola

of Apollonius for some point of s. For let P be any one inter-

section of k and s
;

let the normal at P to k meet k again at 0.

Then the hyperbola of Apollonius for 0 passes through 0, C and P,

and also the two points at infinity on the axes. It is therefore

identical with the hyperbola k. Accordingly any such hyperbola

meets the conic s at four points the normals at which are concurrent

at a point of the hyperbola.

Examples

1. Prove that, if a circle centre 0 meet a conic s at four points A, B, C, D f

the vertices of the diagonal triangle of the quadrangle ABCD lie on the

hyperbola of Apollonius for 0 and s.

2. Show that the pencils of conics defined by a conic s and any of a set of
circles with a common centre 0 have the hyperbola of Apollonius for 0 and s

as their common centre-locus.

3. By taking the circle with centre 0 as the line-pair OO, OQ,', prove
that the Fregier point of 0 for the hyperbola of Apollonius for 0 and a conic s

is the point at infinity on the polar of 0 with respect to s .

4. Show that the tangent at 0 to the hyperbola of Apollonius for 0 and 8

is perpendicular to the polar of O with respect to 8.

5. Show that, if s be a conic whose centre is 0, and 0 is any point, the



SYSTEMS OF CONIOS 273

tangent at C to the hyperbola of Apollonius for 0 and s is the diameter of 8

conjugate to the direction perpendicular to OC.

6. The feet of the perpendiculars from a point 0 on the axes of an ellipse

are M, N, and the perpendicular from 0 on the diameter conjugate to CO
meets MN at L. Show that the point K harmonically conjugate to L with

respect to if, A is the centre of the hyperbola of Apollonius for 0 .

223. Joachimsthal’s Theorem. Let L, M, N, K (Fig. 72)

be the feet of four concurrent normals to a conic s . Consider the

involution determined on the axis AA f by the pencil of conics

through LMNK, The line-pair LM
,
NK determines two points

P,
P'. The conic s determines A, A'. The hyperbola of Apollonius,

having its asymptotes parallel to the axes of s and passing through C

determines C and the point at infinity on AA\ C is then the centre

of this involution. Thus

CP.CP' = - CA2
(1)

But if T be the pole of LM with regard to s and TU be drawn

perpendicular to AA', TU is the polar of P. U, P are therefore

mates in the involution on AA' of conjugate points with regard to s :

and A, A' are double points in this involution.

Hence CP.CU =CA* (2)

From (1) and (2)

CP'=-CU.
Similarly if TV be drawn perpendicular to the other axis CB

and NK meet this axis at Q
f

CQ' = - OF.
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Hence P’Q\ i.e . NK, is parallel to VU . But VU and CT,

being diagonals of the rectangle CUTV, are equally inclined to

the axes CA ,
CB. Therefore NK and CT are equally inclined to

the axes. But CT is the diameter of s conjugate to the direction

of LM. If L! be the other extremity of the diameter CL, L'M
(being a supplemental chord to LM) is parallel to CT and there-

fore equally inclined with NK to the axes. Hence by Art. 77 a

circle will go through U, M,
N, K. This is Joachimsthal’s Theorem,

that if four normals to a conic be concurrent, the circle through

the feet of three of them passes also through the point diamet-

rically opposite to the foot of the fourth.

224. Geometrical constructions for transforming any two

conics into conics Of given type. We have already seen (Art. 149)

how to transform any two conics into circles.

Any two conics may be transformed into concentric conics by

a real projection. For we have seen that there is always one side

of the common self-polar triangle which is real. Projecting that

side to infinity the opposite vertex projects into the common
centre.

If two vertices of the common self-polar triangle of two conics

be projected into Q, O', the conics project into concentric rectangular

hyperbolas.

Any two conics which do not touch may be projected into

coaxial conics. Thus : if EFG be their common self-polar triangle,

project FG to infinity and the angle FEG into a right angle.

Two coaxial conics sly s2 can be transformed intd one another

by reciprocal polars.

Let C (Fig. 73) be their common centre, A XA{ and B
x
B

x

f

the

axes of s X9 A 2A 2 and B2B2 the axes of s2 . Find the double points

Ay A' of the involution determined by the pairs of mates (A x ,
A 2 )

(A X y
A2 )

and the double points B, B' of the involution determined

by the pairs of mates (Bly B2 )
(B

x ,
B2 ). Then from symmetry

about C a conic s exists having ^4^4', BB ' as axes. Form the re-

ciprocal polar conic s2 of s x with regard to s. s2 passes through

A 2t A2) B2 ,
B2 y

and its tangent at A 2 ,
being the polar of A x

with regard to s
,
is perpendicular to CA2 and so is the same as the

tangent to s2 at A2 . s2 ,
s2 are thus identical.

Clearly either extremity of each axis of s x may be denoted by an

accented letter : hence the above construction can be carried out in

four separate ways. Projecting back, we see that there are four

conics with respect to which the original conics are reciprocal polars.
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We have thus proved that, if ki9 k2 are two conics with four

distinct intersections P, Q, R ,
S

9
and therefore also four distinct

common tangents p, q, r, s, there exists at least one conic k with

.

respect to which kl9 k2 are reciprocal polars. Thus k is a conic

with respect to which P, Q ,
P, S are the poles of p, q, r, $

; this

really gives more than enough conditions to determine k
,
but these

are necessarily consistent. It will be found that there are four

ways of correlating P, Q ,
P, S with p> q> r, s

;

these are settled

by the consideration that pq lies on the side of the common
diagonal triangle opposite to the vertex through which PQ
passes.

If now one or more of the points P, Q y
P, S (and therefore also of

the tangents p , q 9
r

,
s) are made to approach one another, the

above proposition will still hold good in the limiting cases, provided

enough conditions are left to determine the conic k
}
and in this way

we can take into account the case of conics in contact, which cannot

be transformed into coaxial central conics.

Thus, if two conics touch at 0, x being the common tangent,

and if P, Q be their other common points, p 9 q their other common
tangents, the conic k is now such that it has (P, p) and also (Q, q)

as pole and polar, and touches x at 0. This is in fact more than

enough to determine it, but these conditions can be shown to

remain consistent, by proceeding to the limit from the more

general case.
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If the conics have three-point contact at 0, they have only

one other common point P and one other common tangent p.

The conic k is now determined from the condition that it has

three-point contact with the given conics at 0, and that P is the

polar of p with regard to it. These are just enough conditions to

fix k.

If the conics k\
9
k2 have four-point contact at 0, all we get from

the general condition above is that k has also four-point contact

at 0 with ki9 k2l and this is not enough to determine k. In this

case, however, we can proceed as follows. Let a given ray through 0
meet ki9 k2 at A lf A 2 and let A be harmonically conjugate to 0
with respect to (A if A2). Let the conic k be taken through A.

Then, since conics having four-point contact at 0 are in plane per-

spective, 0 being the pole and the common tangent x at 0 the axis

of perspective (Art. 46), if an arbitrary ray through 0 meet ki9 k2 ,
k

at Pl5 P2 ,
P we have that AiPl9 A 2P2i AP meet on x

9 and

{OPiPP2} ={OAiAA 2} = -1. Hence the polar of P
x
with respect

to k passes through P2 . But the tangents at P1? P2 ,
P concur at a

point T of x, which is the pole of OP with respect to k. Since

Pi lies on OP, the polar of P
x
with respect to k passes through T ;

therefore it is TP2 and touches k2 . Hence kl} k2 are polar reciprocals

with respect to k.

Finally there is the case of conics having double contact. These

can be projected into concentric circles of radii a Xf a2 . Applying

now the construction of Fig. 73, where any pair of perpendicular

diameters can now be taken as axes, the circles are polar reciprocals

with respect to : two concentric circles of radii V± a
Y
a2 and two

concentric conjugate rectangular hyperbolas, whose semi-axes are

V ± Gi«2 - If we vary the axes, the circles remain the same, but

there is an infinity of rectangular hyperbolas, which are possible

conics k.

In every case a conic k exists for which two given conics are polar

reciprocals, though such a conic is not necessarily real.

Example

Prove that two conics which have simple contact may be projected into

two coaxial parabolas, but that if they have three-point or four-point contact
this is not possible.

225. Two triangles self-polar for the same conic. Let

ABC, A'B'C be two triangles self-polar for the same conic k.

Then we have AB, AC, AB'
,
AC' are conjugate to A'C, A'B, A'C',
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A'B' respectively. Hence, since conjugate pencils through A, A!

are projective

A{BCB'C')^A\CBC'B')-kA'{BCB'C'),

by double interchange.

But the above is the condition that B
,
C, B'

,

O' lie on a conic s

through A and A'.

Hence, if two triangles are self-polar for a conic k, their

six vertices lie on a conic s .

Reciprocate the above theorem with regard to the conic k
,

the self-polar triangles reciprocate into themselves, the vertices

E

reciprocating into the sides, so that the six sides of the triangle touch

the conic s', which is the reciprocal of s with respect to k .

Thus, if two triangles are self-polar for a conic k
,

their

six sides touch a conic s'.

226. Two triangles inscribed in a conic are self-polar for a

conic. We now proceed to prove the converse of the theorem of the

last Article.

Let ABC
,
A'B'C

'

(Fig. 74) be two triangles inscribed in a conic s.

We shall first show that a unique conic k exists for which ABC
is self-polar and A' is the pole of B'C'. Let us first assume that
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such a conic exists. Join AA', and let it meet BC, B'C

'

at D, D'

respectively. Then (A, D) and (A', D') are pairs of conjugate points

for h on the line AA'. Let P
, Q be the double points of the involu-

tion on AA' of which (A, D) and
(
A'

}
D') are pairs of mates. Then

P, Q are the points at which AA’ meets k.

Let {BP, CQ) =R, {BQ, CP)=S, and {BP, CA)=E. Since

A, D are harmonically conjugate with respect to P, Q, then, by the

property of the complete quadrangle BCPQ, the side RS of the

diagonal triangle passes through A. Also, since {PAQD}^ -1,

C{PAQD} = - 1, and, cutting by the transversal BP, {PERB} = - 1.

Therefore, since B, E are conjugate for k {ABC being self-polar for

k), and P lies on k, R lies on k. Similarly S lies on k.

Hence k belongs to the pencil of conics through P, Q, R, S.

Join A'S meeting B'C' at F',
and let T be the harmonic conjugate

of S with respect to A', F'. Since B'C' is the polar of A' with

respect to k, A', F' are conjugate for k, and T must be a point of k.

Conversely, the conic through P, Q, R, S, T, which is uniquely

determined, satisfies all the conditions for k.

For (i) ABC, being the diagonal triangle of a quadrangle PQRS
inscribed in this conic, is self-polar for it

;
(ii) A' is conjugate for

this conic to both B' and F', and therefore is the pole of D'F',

that is, of B'C'. Hence PQRST is the conic k required
;
this conic

accordingly exists and is unique, though not necessarily real.

Let now, if possible, the point of B'C' conjugate to B' for k be

some point D" other than C'. Then A'B'C" is self-polar for k.

Hence, by Art. 225, A ,
B, C, A', B'

,
C" lie on a conic. But this

last conic passes through five points of s, namely A, B, C, A', B',

and so is identical with s. Hence s passes through both C' and C",

so that, if these were distinct, B'C' would meet s in three points,

which is impossible. Thus C" and C' coincide and the triangles

ABC
,
A'B'C' are self-polar for k .

Reciprocating this theorem we see that if two triangles are

circumscribed to a conic, they are self-polar for a conic.

In the above, and in Art. 225, it has been assumed that the

triangles in question do not have either a common vertex or a

common side. The theorems are, however, capable of interpretation

even in this case. Thus, if A— A', the triangles ABC, AB'C' are

self-polar for the line pair x, y where x, y are the double rays of the

involution pencil of which {AB, AC) and (AB', AC') are pairs

of mates. Similarly if BC, B'C' are in a line, the triangles are self-

polar for the point-pairX
,
Y where X

,
Y are the double points of the
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involution determined by (

B

, C) and (B\ C'). In this last case

the conic on which A, B, C, A', B\ C' lie itself degenerates into the

line-pair AA', BC .

Example

Prove that only one circle can be drawn for which a given triangle is

self-polar.

227, Outpolar and inpolar conics. If a triangle ABC self-

polar for a conic k is inscribed in a conic s
,
then there exist an infinite

number of such triangles, one vertex of which may be selected

arbitrarily upon s .

Take any point A

'

of s and let the polar of A

'

with respect to

k meet s at B\ C'. Then ABC and A'B'C' are self-polar for a

conic k
,
for which ABC is self-polar and A' is the pole of B'C'.

But this conic k
,
by Art. 226, is uniquely determined, and is

therefore identical with the conic k. Hence A'B'C

'

is inscribed in s

and self-polar for k.

The conic s, which is such that a triangle inscribed in 5 is self-

polar for k
,
is said to be outpolar to k.

Similarly, if a triangle abc self-polar for k is circumscribed to s'

there exist any number of such triangles, and any tangent to s'

may be taken as a side of such a triangle, which is then determined.

The conic s' is then said to be inpolar to k.

We have seen in Art. 224 that it is always possible to transform

one conic into another by reciprocal polars. If t be the conic

with respect to which s and k are reciprocal, then the triangle ABC
which is self-polar for k

,
reciprocates with respect to t into a

triangle A LBXC\ which is self-polar for s. Also the points A
}
B

, C
of s reciprocate into lines a i9 bl9 c

1
which touch kf

and form the

sides of the triangle ^4
1
5

1C1 . Thus A 1
B

1CY
is self-polar for s and

circumscribed to k . Hence k is inpolar to s.

Similarly, if s' and k are reciprocated into one another, it is found

that k is outpolar to s'.

The relations of outpolarity and inpolarity are therefore re-

ciprocal, so that if a conic is outpolar to a second conic, then the

second is inpolar to the first, and conversely.

Examples

1. Prove that, if a conic is outpolar to s 2
and P, Q are two points of sz,

which are conjugate for sv then the pole R of PQ for sz lies on slt and

conversely, that the polar with regard to s 2 of a point of 8X meets sz at points

conjugate for sv
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2. Prove that, if s t is inpolar to s*, and p, q are two tangents to s2, which

are conjugate for 8V then their chord of contact r touches 8V and, conversely,

ifB be the pole with regard to s2 of a tangent r to s19 the tangents from 2? to

s2 are conjugate for sx .

3. Prove that the locus of the centre of a rectangular hyperbola which is

inscribed in a given triangle is the circle for which the triangle is self-polar.

[For the hyperbola is inpolar to the circle, i.e. triangles self-polar for the

hyperbola are inscribed in the circle, taking Q, or 12' as a vertex of such a

triangle, the centre of the hyperbola lies on this circle.]

4. Prove that all circles through the centre of a rectangular hyperbola are

outpolar to the hyperbola.

A circle is drawn to pass through the centre of a rectangular hyperbola,

and P is the pole of an asymptote with respect to the circle. Show that the

tangents from P to the hyperbola are harmonically conjugate with respect

to the tangents from P to the circle.

5. If a line-pair have its double point on a conic, show that the conic is

outpolar to the line-pair ;
also that, if the line joining the points of a point-

pair touches a conic, the conic is inpolar to the point-pair.

6. Prove that, if a line-pair is outpolar to a conic, the lines of the pair are

conjugate for the conic, and that, if a point-pair is inpolar to a conic, the

points of the pair arc conjugate for the conic.

228. Conic triangularly inscribed in a conic. Poncelet’s

Porism. Since two triangles ABC, A'B'C' inscribed in a conic s

are self-polar with respect to a conic Jc (Art. 226), and two triangles

self-polar with respect to a conic Jc are circumscribed to a conic s'

(Art. 225), it follows that, if two triangles are inscribed in a

conic, they are circumscribed to another conic. For a direct

proof of this theorem, see Exs. IIIa, 17.

It follows that if one triangle ABC can be inscribed in s and

circumscribed to s', any number of such triangles exist.

For take any point A' on s and from A' draw the two tangents

A'B', A'C' to s', meeting s again at B', C' respectively. Then,

since ABC, A'B'C' are inscribed in s, their sides touch a conic t.

But s' and t have five tangents the same, namely BC, CA, AB
,

A'B', A'C'. Hence t coincides with s' and B'C' touches s'.

We shall then say that s is triangularly circumscribed to s',

and that s' is triangularly inscribed in s.

A similar result is easily shown to hold for tetragons, this being

a foux-sided figure in the Euclidean sense, whose sides and vertices

are taken in order.

For let a tetragon^BCDbe inscribed in s, and let its sides AB, BC,

CD, DA touch s'. Let (AB, CD) = X, (BC, DA) = Y, and (AC, BD) =

0, so that OXY is self-polar for s . Let s meetXY at V
,
V. Project

U. V into the circular points, then, since XY are harmonic for U, V,



SYSTEMS OP CONICS 281

they project into points at infinity in perpendicular directions, while

s projects into a circle s x . Also 0 is the pole of XY with respect

to s', as well As with respect to s . Hence s' projects into a conic s
x

'

concentric with the circle, and ABCD projects into a rectangle

A\BiCiDi circumscribed to s x and inscribed in sx . Thus sx is

the orthoptic circle of s x . But if we now draw any two parallel

tangents to sx ,
and also the two perpendicular tangents, we obtain

another rectangle Ai'Bi'Ci'Di circumscribed to whose vertices

must lie on the orthoptic circle s
x . Any number of such rectangles

can be drawn. Projecting back, we obtain an infinite number
of tetragons inscribed in s and circumscribed to s'. We may say,

in such a case, that s is tetragonally circumscribed to s'.

Nor need this conception be limited to four-sided figures. For it is

clear that, if two circles are inscribed and circumscribed to a regular

polygon of ft sides, any number of such polygons can be obtained

by rotating the original one through an arbitrary angle about

the common centre. Proj ecting the circular points into two arbitrary

points S
,
T, we obtain two conics s, s' having double contact

at S
,
T

,
which possess the property that an infinite number of

polygons of n sides can be inscribed in s and circumscribed to s'.

We may then speak of s as polygonally circumscribed, or

n-gonally circumscribed, to s'.

The theorems of this Article are particular cases of a more

general theorem, due to Poncelet, and known as Poncelet’s

Porism, in which the restriction, which has been introduced

above in the case ft >4, that the conics have double contact, is

removed.

Examples

1. Show that a unique conic can be drawn triangularly circumscribed to a

given conic and touching it at two given points H, K.
If conics s, s' touch at //, K, and ABC is a triangle inscribed in s and cir-

cumscribed to s\ show that BC meets IIK at the point whose harmonic
conjugate with regard to (B, C) is the point of contact D of BC with s'

;

and show also that DH, DK are harmonically conjugate with regard to DA,
DB.

[Project II, K into the circular points.]

2. From the theorem that if two triangles are circumscribed to a conic

they are inscribed in another conic prove, by taking two vertices of one triangle

to be the circular points at infinity, that the circle circumscribing a triangle

formed by three tangents to a parabola passes through the focus.

3. Prove that any circle belonging to either of the coaxal systems which
have the real foci of a conic (i) as real intersections, or (ii) as real limiting

points, is tetragonally circumscribed to the conic.
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229. Polar quadrangles and quadrilaterals. Let ABCD (Fig.

75) be a quadrangle, of which two pairs of opposite sides, AB =p and

CD ~p'
9 AD = q and BC = q' are conjugate with regard to a conic k.

We will now prove that in this case the third pair of opposite

sides, AC =r and BD =r', are also conjugate with respect to k .

Let P, P', Q ,
Q

'

be the poles of p, p', q ,
q'. Then P lies on CD

,

P' lies on ^4P, lies on PC and lies on AD. Also, since 4 =pq,

the polar of A is PQ.

Consider now the ranges of conjugate points on AB, AD (i.e.

p, q). These are projective by Art. 52, and, since A corresponds

to the intersections of p } q with the polar of A, this polar is the cross-

axis of the above ranges.

But further, B=pq' has PQ

'

for its polar, and D=p'q has P'Q

for its polar. Hence in the conjugate ranges on p , q P' corresponds

to D and B to Q'. Therefore BD, P'Q

'

meet on the cross-axis, or

P'Q', PQ, BD are concurrent. But
(
P'Q', PQ) is the pole R of

(p'q
f

, M) °f Hence the pole of AC lies on BD, and the

lines r, r' are conjugate for k. Similarly the pole R' of BD is a

point of AC through which pass the lines PQ', P'Q.

A quadrangle such as ABCD, which is such that any pair of

opposite sides are conjugate for a conic k, is said to be a polar

quadrangle for the conic.
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Similarly (or by reciprocation), if two pairs of opposite vertices

of a complete quadrilateral are conjugate points, so is the third

pair and the quadrilateral is said to be a polar quadrilateral for

the conic.

A polar quadrangle can clearly be constructed with three of its

vertices A ,
B, C arbitrarily chosen. For, draw through A a line

conjugate to BC, and through C a line conjugate to BA. If these

lines meet at D, D is the fourth vertex of a polar quadrangle.

Similarly any three sides of a polar quadrilateral can be arbitrarily

selected, and the fourth side is then determinate.

Any self-polar triangle ABC forms with an arbitrary fourth point

D of the plane a polar quadrangle. For since A is the pole of

BC, AD, which passes through A, is conjugate to BC
;

similarly

CD is conjugate to BA and BD is conjugate to AC.
In like manner a self-polar triangle abc forms with an arbitrary

line d of the plane a polar quadrilateral.

It should be carefully noted that, in general, two vertices of a

polar quadrangle are not conjugate points for the conic.

If, however, two of them, say A and B, are conjugate points

then the polar of A, namely PQ (Fig. 75) passes through B. Hence

either Q or R coincides with B. Clearly Q, R cannot coincide with

one another since q, r are different lines. If R coincides with B,

QR coincides with BC, and P with C. Thus A is the pole of BC
and C the pole of AB and the triangle ABC is self-polar. If Q
coincides with B, QR coincides with BD and P with D : A is

the pole of BD, D is the pole of AB, and the triangle ABD is

self-polar.

Hence, in such a case, three of the vertices necessarily form a

self-polar triangle.

Similarly, if two sides of a polar quadrilateral are conjugate

lines, they form with one or other of the two remaining sides a

self-polar triangle.

It should be noted that, if three of the vertices A, B, C of a

polar quadrangle form a self-polar triangle, the fourth vertex D
cannot be conjugate to any one of the three other vertices. For if

it were conjugate, say to A
,
it must lie on BC, and ABCD would no

longer be a proper quadrangle.

A similar conclusion holds for the polar quadrilateral formed

by three sides of a self-polar triangle and any fourth line, not

passing through a vertex of the triangle.

We shall refer to a polar quadrangle, three of whose vertices
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form a self-polar triangle, as a degenerate polar quadrangle, and
similarly to a polar quadrilateral, three of whose sides form a

self-polar triangle, as a degenerate polar quadrilateral.

Examples

1. If a conic has A, C for a pair of conjugate points, and B, D for another
pair, where AO, BD are the diagonals of a rectangle, prove that the axes of the

conic are parallel to the sides of the rectangle.

2. Prove directly that, if two pairs of opposite vertices of a quadrilateral

are conjugate pairs for a conic 1% then the third pair are also conjugate for l\

230. Polar quadrangles inscribed in a conic. Let now ABCD,
ABC'D' be two polar quadrangles for a conic k, having two
vertices A, B common. By the property of the polar quadrangle

(AC, BD) (AD, BC) (AC', BD') (AD', BC') are conjugate pairs.

Hence (Art. 52)

A(CDC'D')-kB(DCD'C')

~B(CDC'D') by Art. 21.

Therefore C, D, C'
,
D f

are intersections of corresponding rays

of two projective pencils of four rays through A and B, that is,

they lie on a conic passing through A and B.

The above theorem fails if A, B are conjugate points for k, for

then (see Art. 52) the conjugate relation does not define projective

pencils through A and B.

In this case we know by Art. 229 that a third vertex of each

quadrangle forms with A and B a self-polar triangle for k. If we
call this vertex C, then C' —C and D

,
D' are any arbitrary points of

the plane. The two quadrangles have then three vertices common.
In this case it is still true that both quadrangles are inscribed

in a conic, for there are only five vertices, and a conic can always

be drawn through five points.

Let now s be any conic circumscribing a quadrangle ABCD
polar for k. It is clear from Art. 229 that it is always possible to

find two vertices of such a quadrangle which are non-conjugate

with regard to k, even when the quadrangle is degenerate. Let

C and D be two such non-conjugate vertices. Take any given

point A' on s, and complete the quadrangle A'BiCD, self-polar for k.

Then Bx must lie upon s. Also both C and D cannot be conjugate

to A', for otherwise the quadrangle would be degenerate, with A'CD
as a self-polar triangle, so that C and D would be conjugate, for k,

which by hypothesis is not the case. Let C be non-conjugate to A'.
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If we now take a second given point B' on s

,

and complete the

quadrangle A'B'CDi ,
polar for k

,
then D

x
is a point of s.

If now A ' is not conjugate to B', let C' be any third given point

;

complete the quadrangle A'B'C'D' polar for k. Then D' is a point

of s, so that a quadrangle A'B'C'D', polar for k, has been inscribed

in s
,
with three arbitrary points A', B ', C', as vertices.

If, however, A' is conjugate to B'
,
then the quadrilateral A'B'CDi

is degenerate, and one of C
,
D

x
is the pole of A'B'. Since C is not

conjugate to A', D
}
must be the pole of A'B', and A'B'D

X
is a self-

polar triangle for k, inscribed in s.

If now the third given point C' is not the pole D
x
of A'B', then

A'B'C'Di is a degenerate polar quadrangle for k inscribed in s,

with the three given points A'B'C' as vertices. In this case the

fourth vertex Dx is determinate, and only one quadrangle satisfies

the conditions.

But if C

'

is itself the pole Dx of A'B'
,
then A'B'CC' is the quad-

rangle required. It may however, in this case, be replaced by any

other degenerate polar quadrangle A'B'C'D', where D' is any point

of s, other than A', B', or C'. The solution therefore involves an

arbitrary element.

It follows, taking all cases together, that if a conic s circumscribe

any quadrangle polar for k, it circumscribes an infinity of quadrangles

polar for k, in any of which three vertices can be arbitrarily selected

on s.

Suppose now we take for B'
, C' the two points where the polar

of A' meets s. Then two vertices (A', B' or A', C') of the polar

quadrangle are conjugate. The quadrangle is therefore degenerate,

and clearly A'B'C' forms a self-polar triangle. The conic s therefore

circumscribes a triangle self-polar for k and therefore is outpolar

to k.

Conversely, if s is outpolar to k, we can find a triangle ABC
self-polar for k and inscribed in s. This triangle forms with any

fourth vertex D lying on s a polar quadrangle for k inscribed in s,

so that if any three points A', B', C' are arbitrarily taken on s ,

not being vertices of a self-polar triangle for k, the fourth vertex

D' of the polar quadrangle A'B'C'D' lies on s.

Similarly it can be proved
: (1) that two polar quadrilaterals for

k, having two non-conjugate sides common, touch a conic t, inpolar

to k
; (2) that any three tangents a, b, c to t being given, not forming

a triangle self-polar for k, the fourth side d of the quadrilateral abed,

polar for k, touches t.
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231. Relations between triangularly inscribed, outpolar and

inpolar conics. Let s2 be two conics such that s2 is triangularly

inscribed in sx . Let ABC, A'B'C' be two of the triangles inscribed

in $i and circumscribed to s2 . By Art. 226 a conic k exists with

regard to which ABC and A'B'C' are both self-polar. Hence s x
is

outpolar to k and s2 is inpolar to k.

If now PQR be any other triangle which has any two of the

following properties : (1) it is inscribed in s
x ; (2) it is circumscribed

to s2 ; (3) it is self-polar for k
,
then it possesses also the third

property.

Take first the case where PQR is self-polar for k and inscribed

in s
x .

Apply a transformation by reciprocal polars with k as base conic.

Since ABC
,
A'B'C' are self-polar for k

,
they transform into them-

selves. Therefore the conic s
1
through their six vertices transforms

into the conic touching their six sides, that is, into s2 . Further,

PQR being also self-polar for k, transforms into itself, and the

vertices P, Q, R lying on s
}
transform into the opposite sides

touching the reciprocal conic s2 . Thus PQR is circumscribed to s2 .

A similar argument shows that if PQR is self-polar for k and

circumscribed to s2 ,
it is inscribed in s

x .

Again, let PQR be inscribed in s
}
and circumscribed to s2 .

Construct the self-polar triangle for k which is inscribed in s
x

and has P as its vertex (Art. 227). Let it be PQ'R'. By the

previous "results PQ'R' is circumscribed to s2 . Hence PQ', PR'

are the tangents from P to s2 ,
and so are identical with PQ, PR.

Thus Q = Q', R = R' and PQR is self-polar for k.

An important result in this connection is that the common self-

polar triangle XYZ of sx ,
s2 is also self-polar for k. For, taking

reciprocal polars with respect to k, as before, XYZ reciprocates into a

triangle self-polar with respect to s2 ,
si9 that is, into itself. It is

therefore self-polar for k. Hence XYZ and any triangle ABC
inscribed in s x and circumscribed to s2 are both self-polar for k

,

so that the vertices X, Y, Z, A, B,C lie on a conic.

If in the above the conics s
x ,

s2 are coaxial, their common self-

polar triangle is formed by the common axes and the line at

infinity. If then ABC is a triangle inscribed in s
x
and circumscribed

to s2 a conic can be drawn through A, B, C passing through the

centre of s x and having its asymptotes parallel to the axes. But
this is a hyperbola of Apollonius for . Hence if such a triangle

exists the three normals to $
x
at its vertices A, B,C are concurrent.
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232. Conics outpolar (or inpolar) to the same eonic. If

two conics $i, s2 are outpolar to the same conic k then their four

points of intersection form a quadrangle polar for k . For let

A, By 0, D be these four points. Consider the quadrangle polar for

k having A, B, C for three vertices. In general its fourth vertex Dx

is uniquely determined, and it must lie on both $i and s2 , so that it is

identical with D. If, however, ABC is itself a triangle self-polar

for k, Dx is arbitrary, but if we take it atD
, we still have a quadrangle

polar for k . The result therefore holds in all cases.

It follows that, in general, conics through three given points

A, By Cy which are outpolar for k
,
form a pencil of conics through

the four points A, By Cy Z), where D is the fourth vertex of the

quadrangle ABCD polar for k. We have an exception when ABC
is a triangle self-polar for k, when every conic circumscribing ABC
is outpolar to k.

In a similar manner, the four common tangents to two conics

inpolar to k form a quadrilateral polar for k and conics touching

three given lines and inpolar to a given conic form, in general, a

range of conics inscribed in the quadrilateral polar for k, of which

the three given lines are sides.

It follows from the above that through four given points A, B,

Cy E of the plane, one conic s can, in general, be described, outpolar

to a given conic k. For complete the quadrangle ABCD polar for

k. Then the conic through A, Bf C, D, E satisfies the conditions,

and, in general, is the only conic which does so.

In like manner there exists, in general, one conic through three

given points A, B, C which is outpolar to two given conics Jfc
x ,
k2 .

For, complete the quadrangles ABCD
x ,
ABCD2 polar for k\ 9

k2
respectively. The conic through A, B, C, D ly Z)2 is, in general, the

only one satisfying the conditions.

In like manner, one conic inpolar to k can in general be drawn

to touch four given lines, and one conic inpolar to k\, k2 ,
to touch

three given lines.

233. Faure and Gaskin’s Theorem. If we take two circles

outpolar to a conic s their intersections form a quadrangle self-

polar for s . Hence their radical axis is conjugate with regard to s

to the opposite side of this quadrangle, namely the line at infinity.

This radical axis therefore passes through the centre of s. The

tangents from the centre of s to all circles outpolar to s are then

equal, that is, a circle concentric with s cuts orthogonally every circle

outpolar to $. This circle is therefore the locus of the point circles

20
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outpolar to s. But a point circle is simply two circular lines, and a

line-pair outpolar to s reduces to a pair of conjugate lines for s.

Hence the above locus is the locus of points the circular lines through

which are conjugate for s
,
that is, the orthoptic circle of s by Art. 144.

Hence every circle outpolar to a conic cuts orthogonally the

orthoptic circle of the conic.

Examples

1. Prove the converse of Faure and Gaskin’s Theorem, namely that any
circle which cuts orthogonally the orthoptic circle of a conic is outpolar for

the conic.

2. If a circle cut harmonically the sides of a triangle circumscribed to a

conic, it cuts orthogonally the orthoptic circle of the conic.

[For the circle is outpolar to the conic.]

3. Show that the orthoptic circles of the conics of a pencil are orthogonal

to a fixed circle.

[For the circle circumscribing the common self-polar triangle of the pencil

is outpolar to every conic of the pencil.]

234. Nets and webs of conics. The set of conics outpolar to

one, two, three or four conics will be said to form a net of the

fourth, third, second or first grade respectively, and the set of

conics inpolar to one, two, three or four conics will be said to form

a web of the fourth, third, second or first grade respectively.

We have already seen (Art. 232) that a conic outpolar to a given

conic can be made in general to pass through four given points in

one way' only. The condition that a conic is outpolar to a given

conic must therefore be equivalent to a linear relation between the

coefficients in the equation of the conic, a conclusion which is con-

firmed by the result already proved in Art. 232 that a conic outpolar

to two conics is free to pass through three given points.

Hence a conic belonging to a net of the first grade has already

to satisfy four linear relations between its coefficients. One such

conic can then be made to pass through any point of the plane.

But the intersections of two such conics form a quadrangle polar

with regard to each of the four conics determining the net. The
conic through any point P and the vertices of this quadrangle is

a conic of the net
;
and it is the only conic of the net through P.

The net therefore reduces in this case to a pencil of conics. Similarly

the web of the first grade reduces to a range.

A conic belonging to a net of the second grade may in general

be made to pass through two given points of the plane, and one

belonging to a web of the second grade to touch two given lines
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of the plane. The corresponding results for the nets and webs
of the third and fourth grades have already been obtained.

235. Similar conies. Two coplanar conics are said to be similar

and similarly situated if they correspond in a plane perspective

of which the axis is at infinity. It follows that the points at

infinity of two such conics coincide, or their asymptotes are

parallel.

Conversely if two conics s
x , s2 have their asymptotes parallel

they are similar and similarly situated. For let 7°°, J°° be their

two common points at infinity, t one of their common tangents

touching Si at P1? s2 at P2 . Through P
l9 P2 draw any two parallel

lines meeting s i9 s2 again at QXi Q2 respectively, and let QXi Q2

meet t at 0. With 0 as pole of perspective, the line at infinity

as axis of perspective and P1? P2 as a pair of corresponding points,

construct the conic s2 in plane perspective with Then s2 ,
s2

have in common the points 7°°, «/°°, Q2) P2 and the tangent at P2 .

They are therefore identical, that is, s
l9

s2 are similar and similarly

situated.

Any two conics may be projected into similar conics by projecting

one of their common chords to infinity. Projecting back we see

that any two conics correspond in a plane perspective in which

any one of their common chords is taken as axis of perspective (cf.

Exs. IIIa, 11).

EXAMPLES XIIIa

1. Show that the cross-ratio of the flat pencil formed by the polars of a

point U with regard to four conics of a pencil is independent of the position

of U in the plane.

2. Show that the cross-ratio of the range formed by the poles of a line u
with regard to four conics of a range is independent of the position of u in the

plane.

3. Prove that the harmonic conjugates of a variable point with regard to

four given pairs of points in involution have a constant cross-ratio.

4. Prove that if P, Q are the points of contact of a variable conic of a range

with two sides of the base quadrilateral, PQ passes through a fixed point.

5. Prove that the conics for which two given points A , B are the poles of

two given lines a, b respectively, form a pencil of conics having double

contact.

6. Prove that the product of a pencil of conics and a homographic flat

pencil is a cubic curve, and show how to find the tangents to the curve at the

vertices of the base quadrangle of the pencil of conics and at the vertex of the

flat pencil.
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Show that a cubic of this type can in general be made to pass through eight

given points of the plane. -

7. Show that the locus of points of contact of the tangents drawn from an
arbitrary fixed point P to the conics passing through four given points

A, B, C, D passes through P, A, B, C, I), through the vertices Ey F, 0 of the

diagonal triangle of ABCD and through the intersections of PE, PF, PO
with FO, QE, EF respectively. Show further that this locus is a cubic

curve.

8. Two confocal conics s and s' are such that there is a triangle ABC
inscribed in s and circumscribed about s'

;

show that the normals to s at

A, B, C are concurrent, and that the normals to s' at its points of contact

with the sides of ABC are concurrent.

9. 0 is a fixed point in the plane of a central conic k : prove that the

envelope of the polars of O with respect to conics confocal with k is a parabola

p, whose directrix is the line joining O to the centre of k.

Prove also that if S is the focus of p, the relation between the points O, 8
is mutual.

10. Show that in a range of conics two are rectangular hyperbolas and that

their orthoptic circles are the point-circles of the system of coaxal orthoptic

circles of the range.

11. The locus of centres of rectangular hyperbolas circumscribing a triangle

is the nine-points circle of the triangle.

12. Reciprocate the theorems of Art. 219 with respect to (i) one of the

vertices of the base quadrangle, (ii) any other point.

13. sv s 2 and k are three given conics. Prove that the polar reciprocals

of k with respect to the conics of the pencil, of which s ly s
2 are members,

envelop a quartic curve having double points at the vertices of the common
self-polar triangle of slt s2 . *

Show also that three of the above system of polar reciprocals degenerate

into line-pairs, every line of which touches the same conic.

[Prove that the envelope is the locus of points conjugate to points of k with
regard to the pencil.]

14. Two conics have three-point contact at C ; CP and CQ are the

diameters of the two conics through C. Prove that PQ passes through the

intersection of the tangent at C and the other common tangent.

15. Prove that, if two conics have four-point contact at 0 and Q is the pole

with regard to the second of the tangent at P to the first, 0 , P, Q are collinear.

16. The conics of a pencil have three-point contact at A with a circle c

and pass through a point B. Prove that their centre-locus touches c at A f

passes through the middle point C of AB, and touches the line through C
parallel to the tangent at A.

Prove also that the circle of curvature to the centre-locus at A touches c

externally at A ,
and that its radius is one-half that of c. Hence show how to

construct the centre-locus.

17. The normals at K, L, M, N to an ellipse whose centre is 0 each pass

through the point H. Prove that the locus of the centres of all conics

through jK, L, M, N is a hyperbola passing through 0 and having as the

tangent at 0 the line perpendicular to OH .

18. Prove that from any point 0 in the plane of a parabola three normals
can in general be drawn to the curve.

What becomes, in this case, of the hyperbola of Apollonius for 0 ?
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19. If a point 0 describes a normal to a conic the feet M, N, K of the
three other normals drawn from 0 to the conic form a triangle circumscribing
a parabola touching the axes.

[If T (Fig. 72) describe LT, the ranges [U], [F], and [P'], [Q'] are similar

NK envelops a parabola.]

20. A hyperbola touches a conic k at P, passes through the centre C of h
and has its asymptotes parallel to the axes of k . Show that it meets the
normal at P at the centre of curvature of k at P.

21. Prove that the eleven-line conic of a point P with respect to a system
of confocal conics whose foci are II is a parabola touching the common
axes, the bisectors of the angle SPII ,

and the perpendiculars through S, II

to &P, HP respectively.

22. Through a fixed point 0 a conic s is drawn having double contact
with a given conic k. Show that the common chord of s

, k meets the tangent
at 0 to s on a fixed straight line.

23. A 1B1
CV A 2B 2C2 are two triangles inscribed in the same conic. Conics

sv s2 are described about A-Ji-^C^ AJBJJa respectively, having double con-

tact with one another. Show that their common chord of contact touches
the conic for which A iBxC19 A 2B2C2 are self-polar.

24. Show that circles passing through a given point, which are outpolar to a
given conic, pass through a second fixed point.

25. The tangents to a conic k at P and Q meet at ,Z>. Conics p, q pass
through I) and touch PQ at P, Q respectively. If A , B, (J are the remaining
intersections of p, q, prove that ABCI) is a polar quadrangle for k.

[Show that p, q are outpolar for k.]

26. If triangles exist which are inscribed in a circle c and circumscribed

to a circle c' it is necessary and sufficient that the rectangle contained by seg-

ments of chords of c through the centre of c' should be numerically equal to

twice the product of the radii.

27. Show how, by a real projection, to project two conics which intersect

in only two real points into two similar and similarly situated ellipses.

28. From a given point A a variable chord APQ is drawn to a given conic s.

Through P, Q and another given point B a conic is drawn similar and similarly

situated to s. Prove that this conic passes through a certain fixed point
other than B.

[Project the points at infinity on s into the circular points.]

29. If two coaxial conics be such that a triangle exists which is circum-

scribed to one conic and inscribed in the other, prove that the axes and the
sides of the triangle touch a parabola.

30. If P be the pole of a fixed line l with respect to a variable conic of a
pencil, and t the tangent at P to the conic of the pencil which passes through P,
prove that the envelope of the lines t is a curve of the third class, which
touches the six common chords of the conics of the pencil.

31. Prove that in general, the lines which meet three given coplanar

conics in three pairs of points in involution form an envelope of the third

class, touching each of the eighteen lines which are common chords of two
of the conics.

How is this result modified when the three conics have one or more points

in common ?

32. If ABC be a triangle circumscribed to a conic s, P, Q, R the points of

contact with s of the sides a, 6, c of ABC, then if QR, RP, PQ meet a, b, c



292 PROJECTIVE GEOMETRY

at L, M, N respectively, L, M, N lie on a straight line u ; and AP, BQ, CR
meet at a point U.

Show that if, as s is varied, u passes through a fixed point, then U describes

a conic and that in this case the conics 8 touch a fourth fixed line.

33. If 8 is the harmonic envelope of two conics sl9 s2 , and s' is the reciprocal

polar of 8 with respect to sv prove that s' passes through the four intersections

of sv s2 and either has no other intersection with s2, or entirely coincides

with it.

What is the relation between sv s 2 in the latter case ?

State the theorem obtained by reciprocating the above.

EXAMPLES XIIIb

[The axes of co-ordinates are rectangular.]

1. Construct five points on the locus of points conjugate to the points of

*/= 0 with regard to the conics through (0, 0), (0, 2), (4, 1), (5, 3).

Find also both asymptotes of this locus in position.

2. ABC is a triangle with BC=1 inches, CA — 5 inches, AB~ 4 inches;

D is an internal point of AC such that AD=2 inches and E is an internal

point of AB such that AE= 3 inches ; F and G are the points of trisection

of DE. Obtain enough points or tangents to determine uniquely each of the

conics passing through F and G and touching BC, GA and AB.

3. Construct the conic of which the points (±1, 0) are the foci and for

which the lines y= 1, x+y= 3 are conjugate.

4. The conics of a pencil have three-point contact with the circle

a;
2 ~ fix + y

2— 0

at the origin, and pass through the point P (2, 4). Construct (i) the centre

of the conic of the pencil which touches the parallel through P to the axis of

y ,
(ii) the intersections of this conic with the line y= 2.

5. The conics of a pencil have four-point contact with the ellipse

at the point 1 on it. Construct (i) the point of contact Q of the

conic of the pencil touching the axis of x, (ii) the centre of this conic, (iii) one
point on this conic, other than P or Q.

6. A parabola has its axis parallel to y~ 0, passes through the origin, and
touches the line 2y — x— 3 at the point P(l, 2). Determine the directions of

the asymptotes of the rectangular hyperbola which has four-point contact

with the parabola at P.

7. Construct the circle outpolar to the hyperbola

x2 — 2?/
2= 4

and passing through the points (1, 4), (3, 0).

Find the other points of contact with the hyperbola of the triangle, self-

polar for the circle, of which one side is the tangent to the hyperbola at

(2v% V2).
8. A conic is outpolar to the circle

o?
2+ y

2=9
and passes through the points (4, 1), (0, 5), (2, 2) and (6, 3).

Construct (i) a fifth point on it, (ii) the tangents at this point and at the

four given points, (iii) the centre.



CHAPTER XIV

THE CONE AND SPHERE

236. The geometry of the star. The lines and planes through

a point 0 form a set of elements, which we shall term a star

(cf. Arts. 1, 134, 135), following the modern practice, though the

name sheaf is still often used. The lines and planes of the star

meet any plane not passing through 0 in the points and lines of

the plane respectively. To every geometrical theorem concerning

points and lines of the plane there is a corresponding theorem

concerning lines and planes of the star.

A range of the first order in the plane corresponds to a flat

pencil in the star
;

a flat pencil in the plane corresponds to an

axial pencil in the star, of which the axis is the line joining the

vertex of the star to the vertex of the flat pencil.

We note further that, if a point of the plane lies on a line of

the plane, the corresponding line of the star lies in the corresponding

plane of the star. Thus properties of incidence are preserved when
we pass from the plane to the star.

Since flat and axial pencils of the star are incident respectively

with ranges and flat pencils of the plane, and incident forms are

equi-anharmonic, it follows that properties involving cross-ratio

are preserved when we pass from the plane to the star.

Further the correspondence between the lines of the star and

the points of the plane, as also between the planes of the star and

the lines of the plane is one-one and algebraic in the sense explained

in Art. 158.

To the points of a plane curve correspond the generators of a

cone of vertex 0, standing upon the curve as base. To the tangents

to this curve correspond tangent planes to the cone, their points of

contact corresponding to the generators of contact of the corre-

sponding tangent planes to the cone. Thus properties of tangency

are preserved in the passage from the plane to the star.

It follows from the above that all projective properties of plane

293
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figures, that is, properties of incidence, tangency and cross-ratio,

lead to corresponding properties of the star. In what follows we

shall enumerate the most important of these properties. The

proofs will in general be obvious from the above principles ; where

they are not so obvious, a few hints will be given to enable the

student to supply the demonstration for himself.

As, however, a star cannot be projected into another star, as a

plane figure can be projected into another plane figure, it is hardly

legitimate to use the term projective of star figures, and we shall

therefore use the more general word homographic in this connection.

The figure in the star which corresponds to a triangle in the plane

is a trihedral angle, that is, a solid angle with three plane faces

meeting at a point. This we shall call a three-edge. The plane

faces correspond to the sides of a plane triangle
;
their intersections

are the three edges, which correspond to the vertices of the plane

triangle. The angles between the edges are the plane angles of

the three-edge, and are analogous to the lengths of the sides in a

plane triangle. The dihedral angles between the plane faces are

analogous to the angles of the plane triangle.

Corresponding to a complete quadrangle in the plane we have a

complete four-edge in the sheaf. Such a four-edge has six faces

and the meets of the pairs of opposite faces form its diagonal three-

edge.

Similarly to the complete quadrilateral corresponds the complete

four-face, with six edges and three diagonal planes, which form

its diagonal three-edge. The harmonic properties of the complete

quadrangle and quadrilateral are transferred at once to the four-

edge and four-face. Thus two faces of the diagonal three-edge

of a complete four-edge are harmonically conjugate with regard

to the two faces of the four-edge through their intersections
;
and

two edges of the diagonal three-edge of a complete four-face are

harmonically conjugate with regard to the two edges of the four-

face in their common plane.

The reader should note that flat pencils in the star, although they

have a common vertex, are not in general coplanar and therefore

are not cobasal (Art. 24). Two such non-cobasal flat pencils are

analogous, in the star, to two ranges on different straight lines in

the plane.

We note also that the properties of two projective ranges or

pencils, given in Chapter III, transfer at once to the star. Thus

if two homographic flat pencils with a common vertex, but in
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different planes, have a self-corresponding ray, then corresponding

rays lie in planes through a fixed axis, so that the two flat pencils

are sections of the same axial pencil. Again if two homographic

axial pencils whose axes intersect at 0 have a self-correspond-

ing plane, corresponding planes meet on a fixed plane through

0, so that the axial pencils are incident with the same flat

pencil.

Also any two homographic non-cobasal axial pencils [a], [a'] of

the star have a cross-axis through which passes the plane joining

the cross-meets a^', a
x
'a2 of any two corresponding pairs of

planes a 1? a2 and ax', a2
'. Similarly two homographic non-coplanar

flat pencils of the star have a cross-plane, on which the planes

dia2', a{a2 meet, where a 1? a2 and a2 are any two corresponding

pairs of rays of the flat pencils.

237. Star perspective. Homographic and reciprocal star-

fields. If we consider two coplanar fields in plane perspective,

and form the corresponding star of vertex 0, we obtain two star-

fields homographically related in such a way that the plane through

any two corresponding lines passes through a fixed line, and the

meets of corresponding planes lie in a fixed plane. We may
describe such a relation as star perspective, the fixed line being

the axis of star perspective and the fixed plane the plane of

perspective.

As in Chapter I, a star perspective is defined if we are given

the axis and plane of perspective and either a pair of corresponding

lines, or a pair of corresponding planes.

The property of Desargues’ perspective triangles is immediately

applied to the star. If abc, a'b'c' be two three-edges of the star,

whose faces are a, /?, y ;
a', /?', y respectively, then, if aa

f

bb',

cc' are concurrent through a line x, then oca', /?/?', yy' are coplanar

in a plane tt
;
and conversely.

We can also have the more general case where two star-fields

are homographically related by a one-one algebraic relation, in

which lines correspond to lines and planes to planes. Two such

star-fields meet any plane in homographic plane-fields. The

correspondence is uniquely determined when two corresponding

four-edges are given.

In a similar manner, reciprocal fields in the plane give rise to

reciprocal star-fields, having analogous properties. The principle

of duality also applies to the star, lines and planes being now inter-

changeable.
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Examples

1 . Prove that the homography between two star-fields is entirely determined

when two corresponding four-edges are given.

If the star-fields have the same vertex, show that they have, in general,

one self-corresponding three-edge and that this three-edge, together with

a pair of corresponding points, determines entirely the homography.

2. Prove that if two star-fields are reciprocal, these are two cones which

are the locus and the envelope, respectively, of incident corresponding lines

and planes.

3. Prove that the transformation, in which any line corresponds to the

plane of the star perpendicular to the given line, is a reciprocal transformation

in the star, and show that it corresponds to a point reciprocation in the plane,

the radius of reciprocation being a pure imaginary.

238. Representation of the star on a sphere. If we describe

a sphere of arbitrary radius, whose centre is the vertex of a star,

every plane of the star determines a great circle on the sphere. Also

every line of the star determines a pair of antipodal points on the

sphere. From many points of view it is desirable to associate two

such antipodal points as one unit, and we shall refer to them as

a dyad, which may be denoted by either of its points. Two

distinct great circles have only one dyad in common, and two

distinct dyads determine a single great circle. Corresponding to

any figure of points and lines in a plane there is a figure of lines and

planes in the star, giving rise to a corresponding figure of dyads

and great circles on the sphere.

An axial pencil of planes of the star determines a spherical

pencil of great circles passing through a dyad and a flat pencil

of lines of the star determines a spherical range of dyads on a

great circle. The cross-ratio of four elements is determined from

four arcs of a spherical range, or from four angles of a spherical

pencil, by a formula involving the sines of these arcs or angles,

identical with that proved for flat pencils in Art. 22. It is easily

seen that the cross-ratio of four dyads on a great circle is inde-

pendent of which particular point of any one dyad is chosen to fix

the arcs in question. Also all great circles meet a spherical pencil

of four great circles in spherical ranges of the same cross-ratio.

We have thus a whole theory of projective
(
i.e . homographic)

and perspective forms of the first order on the sphere which corre-

sponds to the theory already developed for the plane. There

are certain differences, for example, bearing in mind that two points

of a spherical range correspond to one line of the defining flat

pencil through the centre of the sphere we see that there are two
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points (but only one dyad) of a spherical range determining a given

cross-ratio with three given points of the range.

The reader will notice that dyads on a great circle form an

involution on the circle, so that homographic spherical ranges are

a particular case of homographic involutions. «
Also the principle of duality will hold for figures on the sphere.

For since the angles between two great circles are equal to the

arcs joining their poles (measured by the angles subtended at the

centre), if we make a great circle correspond to its pair of poles

and conversely, we have spherical pencils corresponding to equi-

anharmonic spherical ranges and conversely.

In order to avoid confusion with pole and polar with respect

to a conic (which, as we shall see, has its analogue on the sphere)

we shall speak of the poles of a great circle as its spherical poles ;

the great circle will be spoken of as the equator of either of these

points.

A three-edge of the star corresponds to a set of three dyads,

forming a spherical triangle and its complements
;
the arcs which

form the sides of the spherical triangle measure the plane angles

of the three-edge, and the angles of the spherical triangle are the

dihedral angles of the three-edge.

The four-edge and four-face lead to a spherical quadrangle of

dyads and to a spherical quadrilateral respectively. These have

clearly the same harmonic property as the plane quadrangle and

quadrilateral.

We thus have a further correspondence between the star and the

sphere, besides that between the star and the plane. The corre-

spondence between the star and the sphere is, however, more

complete and intimate, for it preserves the symmetry round the

centre. In fact, the difference between the geometry of the star

and that of the sphere is merely one of language. It is, however,

very convenient to use the sphere to represent properties of the

star, because it enables us to use the same language as that of

plane geometry, the great circle replacing the straight line, and the

analogies between the geometry of the star and that of the plane

are thus brought out in a striking manner.

It follows that, so far as purely projective properties are concerned,

the spherical and the plane geometry must be entirely identical.

For example, the theorems of the cross-centre and cross-axis, proved

in Chapter II for projective ranges and pencils in the plane, apply

equally to homographic great circle ranges and pencils on the
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sphere, and so do the constructions for corresponding triads, and

for harmonic points and lines.

It is *only when so-called metrical properties begin to come in,

that is, the magnitudes of lines and angles, that the analogy breaks

down. These properties, in the plane, invariably depend on the

introduction of a special line and points, namely, the line at infinity

and the circular points at infinity. These have no direct analogues

on the sphere
;
and it is for this reason that corresponding metrical

theorems in the two geometries are often so widely different.

We may note that the methods of plane perspective are im-

mediately applied to the sphere, for star perspective leads at once

to a spherical perspective, in which the great circle join of two

corresponding points passes through a fixed dyad (the pole Of

spherical perspective) and the intersection of corresponding

great circles lies on a fixed great circle (the axis of spherical

perspective).

As in the plane, points on the axis, and great circles through

the pole, are self-corresponding. There are, however, no great

circles corresponding to the vanishing lines, since no great circle

is the analogue of the line at infinity.

If two figures in plane perspective are joined to a point 0 outside

their plane by lines and planes, and the whole cut by any sphere

centre 0, we obtain two figures in spherical perspective on the

sphere.

Similarly two homographic plane fields project from a point 0
outside both their planes into two homographic star-fields with a

common vertex
;
from which we obtain, on the sphere centre 0,

two homographic spherical fields.

Examples

1. Three great circles of a sphere through V are met by a transversal at

A, B. C respectively. Prove that sin AB : sin AC— sin F^.sin A VB : sin VC
sin A VC,

2. Prove that in two homographic fields on the sphere, the ratio

sin BL sin CM sin AN
sin LC ‘sin MA' sin NB *

where L, M, N are any points on the sides BC, CA , AB of a spherical triangle,

is the same for corresponding figures in the two fields.

3. State and prove the theorems corresponding for the sphere to the

theorems of Ceva and Menelaus for the plane.

239. The cone of the second order and the sphero-conic. A
cone of second order is defined as one which is cut in two points
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only by any straight line u in space. Joining u to the vertex 0
of the cone we see that the cone is cut by any plane through its

vertex in two lines of the star through 0. Hence its intersection

with any plane is a curve of the second degree or conic.

Conversely to a conic in the plane corresponds a cone of the

second order in the star.

The twin curve in which a cone of the second order meets a con-

centric sphere is called a sphero-conic. The properties of sphero-

conics are merely a restatement in suitable language of the properties

of the cone of second order. The student will find it a useful

exercise, as he proceeds, to tabulate, in parallel columns, corre-

sponding properties of the plane conic, the cone of the second order

and the sphero-conic.

Now two coplanar conics s
,

s' can always be derived one from

the other by a plane perspective. If the conics touch, this has been

shown in Arts. 41- 43. If they do not touch, let two of their common
tangents a, 6, whose points of contact with s

,
s' are A, A' and

B, B f

respectively, meet at 0, and let any other line through 0
meet s and s' at C and C r

respectively (each of these being arbitrarily

selected from two intersections). Then the triangles ABC
,
A'B'C'

define a plane perspective, in which the conic s (AABBC) corre-

sponds to the conic (
A'A'B'B'C '

), i.e. to s'.

Accordingly any two cones of the second order with the same
vertex can be brought into star perspective, that is, any cone of

the second order can be derived in this way from a right circular

cone.

In like manner, any two sphero-conics on the same sphere

may be related by a spherical perspective, and any sphero-conic

may be derived from the trace upon the sphere of a right circular

cone whose vertex is at the centre of the sphere, that is, from a

small circle of the sphere, such a small circle playing a part in the

theory closely (though, for the reasons already explained, not com-

pletely) analogous to that played by the circle in the plane theory.

Since the line at infinity in the plane corresponds to a plane

of the star, and to a great circle of the sphere, which have no special

significance, it follows that the two regions, into which the inside

of a hyperbola is divided in the plane, cease to be separated in the

star. Thus, all the lines of the star, which belong to the inside

of the cone, form a single continuum, and the boundary of the cone

encloses it entirely. But although the lines form a continuum,

the points (in virtue of the central symmetry of a cone) fall into
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two vertically opposite and symmetrical half-cones, connected at

the vertex. Thus all cones of the second order have the same

topological characteristics.

Consequently there is only one type of sphero-conic, consisting

of two antipodally situated ovals, the intersections of the sphere

by the opposite halves of the cone. The distinction between

the three types of plane conic, ellipse, parabola and hyperbola,

is not reproduced on the sphere, since there is no special great

circle corresponding to the line at infinity.

240. Projective properties of the cone of second order. We
may enumerate a few of the purely projective properties of the

cone of the second order, and of the sphero-conic, which follow

immediately from those of the conic.

In the case of the sphero-conic, no change of wording is even

required, the theorems applying unchanged, with the one alteration

that, where straight line is used in the case of the conic, great

circle should be read in the case of the sphero-conic and also that

we remember that a point in the plane really corresponds to a

dyad on the sphere.

For the cone of the second order we have the following :

Chasles’ Theorem gives : if a be a fixed tangent plane to a

cone of vertex 0, x a fixed generator, tc a variable tangent plane,

p its generator of contact, the flat pencil a[7r] is homographic with

the axial pencil x[p\.

We deduce, as in Chapter III, that a variable tangent plane it

cuts four fixed tangent planes in a flat pencil of constant cross-ratio
;

or taking any tangent line t lying in 77, t cuts these four tangent

planes in a range of constant cross-ratio.

Also a variable generator to the cone determines with four fixed

generators an axial pencil of constant cross-ratio.

Conversely the product of two homographic axial pencils whose

axes Xi, x2 intersect at 0 is a cone of the second order vertex 0,

having Zi, x2 for a pair of generators, and the envelope of the planes

determined by the corresponding rays of two homographic flat

pencils having a common vertex but not lying in the same plane

is again such a cone.

If the two homographic axial pencils have a self-corresponding

plane, their axes intersect in this plane. The flat pencils in which

they intersect any plane are perspective and the product of the

two homographic axial pencils is a plane, together with the self-

corresponding plane.
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Pascal’s Theorem gives : if a six-edged solid angle be inscribed

in a cone of second order, the lines of intersection of opposite faces

are coplanar.

Brianchon’s Theorem gives : if a six-faced solid angle be cir-

cumscribed to a cone of the second order, the planes joining opposite

edges pass through a line. By taking arbitrary points on the six

edges of this solid angle and joining them we obtain the somewhat

different enunciation : if a skew hexagon be circumscribed to a

cone of the second order, the three diagonals joining opposite

vertices intersect a line through the vertex of the cone.

241, Pole and polar properties of the cone of second order.

To any line p through the vertex of a cone of second order corre-

sponds a plane 77 through the vertex which is called the diametral

plane of the cone conjugate to the diameter p. This is obtained

by joining to the vertex of the cone the polar of the point in which

p cuts any plane a with regard to the section of the cone by a.

Also since cross-ratio is unaltered by projection, if P be any point

of p and a line through P meet the cone at Q ,
R and tt at P f

then

P, P' are harmonically conjugate with regard to Q, R. tt is therefore

also called the polar plane of P, and conversely P is a pole of tt.

We see that any plane through the vertex has an infinite number of

poles, which all lie on its conjugate diameter.

If P' lies on the polar plane of P, conversely the polar plane of

P' passes through P.

Such planes are called conjugate diametral planes. They meet

any plane in two lines which are conjugate with regard to the

section of the cone by that plane. From the property that two

such conjugate lines are harmonically conjugate with regard to

the two tangents from their intersection, we see that two conjugate

diametral planes for the cone are harmonically conjugate with

regard to the two tangent planes through their intersection.

Similarly conjugate diameters of the cone are harmonically con-

jugate with regard to the two generators of the cone in their plane.

The polar plane of the vertex is indeterminate : conversely every

plane not passing through the vertex has the vertex for pole.

To a triangle self-polar with regard to any plane section of a

cone of second order corresponds a trihedral angle or three-edge

self-polar with regard to the cone, the edges of which pass through

the vertices of the triangle. These edges form a set of three

diameters conjugate pair and pair, and such that each is conjugate

to the opposite face of the three-edge.
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Chords parallel to any diameter of the cone (i.e. any line through

the vertex) are bisected by the conjugate diametral plane. This

plane also contains the generators of contact of the two tangent

planes to the cone through the diameter in question.

A diameter of the cone passes through the centres of the sections

of the cone by planes parallel to its conjugate diametral plane.

For let u
9
v

9
w be a self-polar three-edge, it will meet a plane

parallel to vw in the vertices V, F 00
,
IF00 of a self-polar triangle

for the section. U is thus the pole with regard to this section of

F 00 IF00, that is, of the line at infinity in the plane of the section.

V is therefore the centre of the section.

Using the representation on a sphere, previously explained

(Art. 238), it follows that all the usual pole and polar properties

of the conic hold also for the sphero-conic, the line joining the

centre of the sphere to a point P being conjugate, for the cone

corresponding to the sphero-conic, to the diametral plane through

the polar great circle of P with respect to the sphero-conic. The

property of diameters bisecting conjugate chords, and also of the

tangent at P being parallel to the diameter conjugate to that through

P depend on the line at infinity and are not transferable to the

sphere, where, indeed, there are no analogues to parallel lines.

The generators of a cone of the second order form a conical

pencil Of the second order, and four rays of this pencil have a

cross-ratio defined by the cross-ratio of the axial pencil formed

by the planes through the rays and any given generator of

the cone.

Such conical pencils have properties corresponding strictly to

those of ranges of the second order on the conic. In particular,

two such homographic pencils on the same cone have a cross-

plane, which meets the cone in the self-corresponding rays of the

pencils.

The involution properties, so far as they do not involve the special

elements, are also transferable to the star. Thus, an involution

of rays on a cone of the second order has an axis of involution,

through which passes the plane containing any pair of mates, and

an involution plane, containing meets of planes (pq, p'q') or (pq' 9 p'q),

where p9 p'
; q 9

q'
9
are any two pairs of mates.

Similarly the set of planes tangent to a cone of the second order

have properties analogous to those of the pencil of second order

in the plane. We may apply, to such a set of tangent planes,

the name of wrap of the second order.
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It would be tedious to multiply such examples
;
once the general

principle has been grasped, no difficulty will be found in transferring

to the star any property which does not depend upon the special

elements.

Examples

1. a, b are two fixed lines of a star, l is a variable line of the star such that
the planes al, bl meet a fixed plane of the star in lines p, q, which make a
constant angle with one another. Show that l describes a cone of the second
order.

2. Find the envelope of a plane of a star which moves so that its traces
on two fixed planes of the star subtend a fixed dihedral angle at a fixed line
of the star.

3. Prove the analogue of Carnot’s Theorem for the sphere, namely that,
if the sides of a spherical triangle ABC meet a Bphero-conic at non-anti-
podal points P, P'

; Q, Q '
; R, R then

sin BP,sin BP' sin CQ.sin CQ' sin AR.&in AR'
sin CP.sin CP' * sin AQ.&inAQ' * sin BR.sin BR'

~ ^

4. Investigate an analogue on the sphere and in the star of Newton’s
Theorem on parallel chords of a conic.

242, Outpolar and inpolar cones. If a cone *q of the second

order be circumscribed about a three-edge self-polar for another

such cone k ,
it contains an infinity of such three-edges, and is said

to be outpolar to /c. Similarly if a cone k2 be inscribed in a three-

edge self-polar for k
,
it is inscribed in an infinity of such three-edges

and is said to be inpolar to k .

If is outpolar to /c, then k is inpolar to *q.

If we take two three-edges self-polar for a cone there exist

a cone /q, circumscribed about both three-edges, and therefore

outpolar to k
,
and a cone k2 ,

inscribed in both three-edges, and
therefore inpolar to k . #q is then trihedrally circumscribed to

/c2 ,
and any number of three-edges can be described, each of which

is inscribed in /q and circumscribed about /c2 .

Conversely, if #q is trihedrally circumscribed to k2 ,
then a cone

k exists which is inpolar to #q and outpolar to k2 .

In a precisely similar manner we have sphero-conics outpolar,

inpolar and triangularly circumscribed to other sphero-conics.

248, The circle at infinity and the spherical cone. We now
proceed to consider special curves and surfaces, which play in

three-dimensional space a part similar to that played by the circular

points and lines in the plane, and which will enable us to obtain

metrical results in the geometry of the star and sphere. We have

already mentioned (Art. 4) the plane at infinity which we will

21
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denote by r00. This plane cuts any sphere a in an imaginary

circle, which it will be convenient to denote by Q.
Now consider any plane 77. This meets a in a circle c, which

contains the circular points at infinity of 77,
/°° and J00

.
/°°

and J00 therefore lie on a and on r00
,
that is, they lie on O; ©is

therefore the locus of the circular points at infinity in all planes.

Conversely, if l00
,
J°° are any two points of Q> a plane 77 through

jo°jo° meets a in a circle c and 700
,
J00 are the circular points in

that plane
;

it follows, incidentally, that parallel planes have

the same circular points at infinity.

It now appears that the circle O is a locus independent of the

choice of the sphere a, so that it is the common intersection of all

spheres with the plane at infinity.

But, in any plane, every circle can be obtained as the intersection

of the plane with some sphere
;

applying this to the plane at

infinity, we see that O is the only circle in this plane. It is there-

fore known as the circle at infinity.

If we join any point 0 to the points of the circle at infinity, we
obtain a cone, which is termed the spherical cone through 0 .

Every plane 77 meets a spherical cone in a circle. For take the

line at infinity of 77. It meets the cone on the circle at infinity.

The two circular points at infinity of 77 are therefore on the section :

hence the latter must be a circle.

Such a cone, being a surface of the second order passing through

the circle at infinity, is to be also considered as a sphere. It is,

in fact, a point-sphere and is the limiting case of a sphere of

vanishingly small radius—precisely as a pair of circular lines form

a point-circle. Hence the name spherical cone.

Since the two circular points at infinity in any plane are con-

jugate imaginary, it follows that the conjugate imaginary point

to any point of O is itself a point of O, so that O is its own
conjugate imaginary locus.

The reader may ask why this does not make it a real circle,

in the same way that a straight line which is its own conjugate

imaginary can be shown to be always real. The answer is that

the circle at infinity is indeed determined by two real equations,

namely that of any sphere and that of the plane at infinity.

But the locus determined by such real equations need not itself

be real, unless the equations are both linear, which is the case for

the straight line.

Similarly the spherical cone with a real vertex is its own con-
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jugate imaginary. Here there is only one equation, which is real,

being of the form z2 +y2 +z2 = 0, but which has no real non-zero

solutions.

244. Rectangular directions are conjugate for the circle at

infinity. Let C7°°, F00 be two points at infinity corresponding

to perpendicular directions. Let rr be any plane through C/^F00
,

meeting the circle at infinity at 7°°, J°°. Then I00
, J°° are circular

points of 7r. Also, if P be any point of 77 at a finite distance,

PC/00
,
PF00 are perpendicular, and therefore harmonically con-

jugate with respect to P700
,
PJ00

. Hence C/00
,
F00 are harmonically

conjugate with respect to the points 700
,
*/°° at which the line at

infinity of 77
,
that is C/^F00

,
meets Q. Hence C/00

,
F00 are

conjugate points for Q.
Conversely, if C/00

, F 00 are conjugate points for Q> let t/^F 00

meet O at 700
,
J00

,
then {U^I^V^J 00

} = -1. If 77 be any plane

through £7°°, F00
,
then 7 00 and J00 are circular points of 77 and,

P having the same meaning as before, PC/00
,
PF00 are harmonically

conjugate with respect to the circular lines through P, and there-

fore perpendicular. Thus C/
00

,
F00 correspond to rectangular

directions.

Transferring the above results from the plane at infinity to

the star of vertex 0, we see that any two rectangular lines through

0 are conjugate for the spherical cone through 0, and, conversely,

that any two lines through 0 conjugate for this spherical cone are

rectangular.

It follows that any self-polar three-edge for the spherical

cone is trirectangular, which involves that its three faces are

mutually perpendicular.

Since any two conjugate diametral planes can always be taken

to form two faces of a self-polar three-edge, it follows that any
two conjugate diametral planes of the spherical cone are perpen-

dicular.

Transferring back the last property from the star to the plane

at infinity we see that any two lines at infinity, conjugate for the

circle at infinity, lie in perpendicular planes.

Conversely, any rectangular three-edge is self-polar for the

spherical cone through its vertex, and any two perpendicular

planes through this vertex are conjugate for the spherical cone,

and meet the plane at infinity in lines conjugate for O.
Since the circle at infinity lies on any sphere, it is a particular
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case of a sphero-conic, and as such, plays a fundamental part

in the metrical geometry of the sphere. It follows at once from

the above that any two points of the sphere, conjugate for O,
are separated by a quadrantal arc, that any two perpendicular

great circles are conjugate for o, and that any trirectangular

spherical triangle is self-polar for O ;
the converse results being

also true.

Examples

1. Show that if one rectangular three-edge can be inscribed in or cir-

cumscribed to a cone of the second order, an infinite number of Buch three-

edges can be so inscribed or circumscribed.

2. Show that on a sphere the points of contact of great circle arcs through

P which touch the circle at infinity are the intersections of this circle with the

equator of P.

3. Prove that the tangent planes through any straight line in space to the

circle at infinity touch this circle at the circular points in the plane per-

pendicular to the given line.

4. If 0 be any origin on a sphere, CX and CY two perpendicular great

circles through C, M and N the feet of the great circle perpendiculars from

any point P on CX, CY respectively, prove that the equation to any small

circle, centre C and angular radius CA is given by

tan 2 CMA tan2 CN** tan 2 CA .

Hence, or otherwise, prove that the equation to the circle at infinity, in

these co-ordinates, is

tan 2 CM -f- tan2 CN— - 1.

5. Prove that, if two great circle arcs OA , OB on the sphere meet at an

angle 9 , and 01, OJ are the two tangents from O to the circle at infinity then

0{AIBJ}^c2iO.

245. Principal axes and principal diametral planes of a cone

Of the second order. Since two conics have in general one

common self-polar triangle, by considering the two cones having

the same vertex and standing on these conics as bases, we see that

two cones with a common vertex have, in general, one common
self-polar three-edge. Taking one of the cones to be spherical we

see that any cone of the second order has one rectangular self-polar

three-edge. The faces of this three-edge are then clearly planes of

symmetry for the cone, since each bisects chords of the cone

perpendicular to itself, and any one of them cuts a section made by

a plane parallel to another in an axis of this section.

A degenerate case arises when the given cone and the spherical

cone have simple contact along a generator. In this case the

common self-polar three-edge is degenerate, two of its faces coin-

ciding with the common tangent plane, which is then to be regarded
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as perpendicular to itself. This case cannot, however, occur if

the given cone of the second order is real, for, if it touches the

spherical cone along an imaginary generator, it must also touch it

along the conjugate imaginary generator, so that the cones have

double contact.

But if two such cones have double contact, the conics in which

they intersect any plane have also double contact, and have an
infinity of common self-polar triangles with a common vertex.

The cones have therefore an infinity of common self-polar three-

edges with a common edge.

We deduce that if a cone has double contact with the spherical

cone having the same vertex, it has an infinity of rectangular self-

polar three-edges with a common edge and therefore (because tri-

rectangular) with their other edges all coplanar. A plane per-

pendicular to this common edge will meet the given cone in a conic

for which all pairs of conjugate diameters are perpendicular, that

is, in a circle, through the centre of which the common edge in

question passes. The cone is then a right circular cone, the common
edge of the self-polar trirectangular three-edges being the axis of

the cone.

A cone of the second order which has double contact with

the spherical cone is therefore right circular, and conversely a

right circular cone has double contact with the spherical cone.

Similarly, a sphero-conic has, in general, three mutually conjugate

quadrantal dyads Clf ; C2 , C2
'

;
C3 , C3 ,

which are the inter-

sections of three mutually conjugate perpendicular great circles.

These latter may be spoken of as the three axes of the sphero-conic,

and their intersections as the three (dyad) centres. If, through

any centre C1? a great circle arc be drawn, meeting the sphero-conic

in two dyads (P, P')
(Q ,

Q') and the axis C2C3 ,
which is the polar

of Ci, at R
,
then Cj, R are harmonically conjugate with regard

to the dyads (P, P') (Q, Q')
;
but since C\, R are separated by a

quadrant, C^, R bisect the angles between PP' and QQ'. Thus

the points of the sphero-conic fall into pairs symmetrically situated

with respect to C\. The centres are thus points of symmetry.

Similarly, P, P', Q, Q' fall into pairs symmetrical with respect to

R. Since R is on an axis C2C3 ,
and the great circle CXR is per-

pendicular to this axis, the sphero-conic is symmetrical with respect

to this (great circle) axis.

If the sphero-conic has double contact with the circle at infinity,

it becomes a pair of antipodal circles. If we take the centres
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Ci, Ci of these as one dyad centre, their equator is an axis, but any

two quadrantal points on this equator are possible centres, and

any two perpendicular great circles through Ci, C{ are possible

axes. Thus the other centres and axes are indeterminate.

246. Foci of sphero-conic and focal lines of a cone. Any
sphero-conic s has four common great circle tangents with the

circle O at infinity. These form a complete spherical quadrilateral

with six dyad vertices. The twelve points of these are called the

foci of the sphero-conic.

Clearly two great circles through a focus which are harmonically

conjugate with regard to the common tangents through that focus

are conjugate for both s and O, and therefore perpendicular.

The foci are therefore points such that great circles conjugate for

s
,
and passing through a focus, are perpendicular.

The foci lie in fours on the axes of the sphero-conic
;

for a

pair of opposite dyad vertices lie on a diagonal of the spherical

quadrilateral above mentioned, that is, on a side of the common
self-polar triangle of s and O, and this is an axis of the sphero-

conic.

The polars of the six focal dyads with respect to s are called the

directrices of s.

Since we have seen that O is its own conjugate imaginary, and

the same is true of s if s is real, the four common tangents x, x\

y,
y' must be conjugate imaginary in pairs. Let x, x' be conjugate

imaginary, as also y ,
y'. Then there can be only two real focal

dyads
(
S

,
S')

(
H

,
H') given by xxf and yy

'

respectively. Since

these are opposite vertices of the spherical quadrilateral xx'yy'

,

they lie on an axis, which may be called the focal axis of the sphero-

conic. Of the other focal dyads, xy and x'y' are conjugate

imaginary, so that the arc joining them is real
;

similarly xy'

and x'y are conjugate imaginary, and the arc joining them is real.

The three axes and the centre dyads are thus always real. The

directrices are real only when the corresponding focal dyads are

real.

Transferring these results to the star, we see that a cone of the

second order has three real principal axes and three real principal

diametral planes, on which lie in pairs six focal lines, but only

one pair of these is real. The focal lines are the edges of the four-

face formed by the common tangent planes of the given cone and

the spherical cone. Each of them has the property that conjugate

diametral planes through it are perpendicular.
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Since the tangent planes from the real focal lines to the spherical

cone are clearly imaginary, no real tangent planes can be drawn

to the given cone of the second order through the real focal lines,

and these must therefore lie entirely inside the cone. Hence the

real foci of a sphero-conic lie in pairs inside the two antipodal ovals

of which the curve consists.

Because a diagonal of a spherical quadrilateral is harmonically

divided by the other two diagonals, the centre dyads (C\, C\)

(C2 ,
C2 )

in the focal axis of a sphero-conic are harmonically divided

by the focal dyads (S, S')
(
H

,
H') and, being quadrantal, bisect

the angles between these pairs. Hence the focal dyads are sym-

metrical with respect to the centre dyads.

Similarly in the cone, two focal lines in a principal diametral

plane are equally inclined to the axes in that plane.

247. Focal properties of the sphero-conic. A number of focal

properties of the conic are repeated in the sphero-conic.

If P be any point of the sphere, there are, in general, two arcs

u
,
v through P which are conjugate for both O and the sphero-

conic s
,
being the common mates of the involutions of conjugate

great circles through P for O and s respectively. They are thus

conjugate arcs at right angles. Since they are conjugate for O,

s, they are also conjugate (by Art. 211, transferred to the sphero-

conic) for all sphero-conics of the range defined by O, s
;

in

particular for the dyad-pair defined by two focal dyads (S, S')

(H, H') on the same axis. Accordingly PS, PH are harmonically

divided by the perpendicular arcs u, v. These latter are accordingly

the bisectors of the angle SPH.
Further, if tangent arcs t\, t2 be drawn from P to the sphero-

conic, ti and t2 also are harmonically conjugate with respect to

u and v and so the angle between t\, t2 is bisected by u and v.

The same is true of the pair of tangents from P to any

sphero-conic of the range (O, s), all of which sphero-conics are

confocal.

In particular, if P be on the conic s, ti and t2 coincide with the

tangent at P to s, so that u
,
v coincide with the tangent and normal.

We have thus the result that the tangent and normal bisect the

angle between the focal distances.

Proceeding on these lines we can prove the properties of Art. 218

for confocal sphero-conics.

Again, if the tangents tly t2 from P to s touch 8 at T2 , TiT%

is the polar arc of P. If it meet the directrix corresponding to
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the focal dyad (
8 , S') in the dyad (Y, Y'), then SP is the polar

of the dyad (Y, Y') and SY, SP are conjugate arcs for s and

therefore perpendicular. But if Z is the meet of the arcs TyT2

and SP9 1\ and T% are harmonically conjugate with regard to Z
and Y. Hence SP, SY are the bisectors of the angles between

ST

i

,
ST2 ,

so that two tangents subtend equal or supplementary

angles at a focus*. It is easily shown that the angles are equal if

Ti, T2 are taken on the same oval of the sphero-conic, and supple-

mentary if taken on different ovals
;
the two cases, however, corre-

spond here to the same tangents, and merely involve a selection

between antipodal points.

Examples

1. Show that if a pair of tangent planes through a diameter d of a cone

of second order touch the cone along s, t and / be a focal line, the planes

fa, ft are equally inclined to fd.

2. If a tangent plane to a cone of the second order meet the tangent planes

perpendicular to a principal diametral plane in lines x , y , the lines x , y subtend

a right dihedral angle at a focal line situated in the given principal diametral

plane.

State the corresponding theorem for the sphero-conic.

3. Show that a plane perpendicular to a focal line cuts the cone in a conic,

the focal line in question passing through a focus of this conic.

4. Prove that, on an axis of a sphero-conic, any number of pairs of

dyads {P, P') (Q, Q') can be found such that all conjugate great circles

through (P, P') and (Q ,
Q') respectively intersect at right angles, and

that these dyads form an involution, of which the fooal dyads are double

elements.

248. The focus and directrix property for the sphero-conic.

Let 0 (Fig. 76) be a focus of a sphero-conic s, i its directrix, i' its

equator, x any great circle passing through the intersections X,
Y

of i and i', and which may conveniently be taken as passing

through 0.

Then 0 as pole, x as axis of perspective, and i
,

i' as a pair of

corresponding great circles define a spherical perspective. Let

s' be the sphero-conic corresponding to s in this perspective. Since

i is the polar of 0 for s
,
and 0 is self-corresponding, i

f

is the polar

of 0 for s', and, since the arc from 0 to any point of i' is a quadrant,

i ' is also the polar of 0 for O* Therefore 0 and i' are a centre and

axis of s' respectively. But, since conjugate arcs through 0 for s

(which are perpendicular) correspond to themselves, they are also

conjugate for s '
;
hence all conjugate arcs through 0 for s' are

perpendicular. This is the case where the axes of .9 ' through 0 are
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indeterminate, so that s' reduces to a pair of antipodal small

circles centre 0.

Let the great circle orthogonal to i
,
i' (and which passes through

0) meet i and i' at I, F respectively. Let P be any point of s .

Join the great circle IP, meeting x at Z, and join ZF meeting the

arc OP at P'. Note that in all these constructions each point

may be either element of a dyad.

By the properties of spherical perspective P' is a point of s'

corresponding to P. Let the arc OPP' meet i at J and i' at J\
If now we project (spherically) the range OPJ'P' from F upon

X

Eia. 76.

the great circle Zl, we obtain the range IPK'Z
,

if K' is the point

where the circle ZI meets i'. We have then

{OPJ'P'} = {IPK'Z}.

Next project IPK'Z from X back upon the great circle OP, we

obtain the range JPJ'O, so that

{IPK'Z} ={JPJ'0}.

Combining these two results

{OPJ'P'} = {JPJ'O}.

Writing out the cross-ratios, this gives

sin OP.sin J'P

'

sin e/P.sin J'O
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Cancelling out the common factor sin J'P in the denominators, and

remembering that J'O is a quadrant and that OP' and P'J' are

complementary arcs, so that sin P'J' = cos OP', we have

sin OP sin JP
tan OP' sin JO

If now the arc PM is drawn perpendicular to the directrix i of s ,

meeting i at M
,
PJM and OJI are two right-angled spherical

triangles, having a common angle at J. By a well-known result

sin JP sin PM
sin J0 sin 01

sin OP sin PM
enCe

tan OP' sin 01

sin OP tan OP'
01

sin PM sin 01

Since s' is a pair of antipodal circles centre 0, OP' is a constant

arc. Also 01 is clearly independent of the choice of P. Hence,

in the last written equation, the right hand side is a constant,

which we can denote by e, and which may be called the eccentricity

of the sphero-conic.

We have thus

sin OP =e.sin PM,

or the sines of the distances from the focus and directrix respectively

are to one another in the constant ratio of the eccentricity.

It is to be noticed, however, that the numerical value of the

eccentricity is not necessarily, as in the plane, an indication of the

shape of the curve. Thus, if the sphero-conic is a small circle

0, the directrix is the equator of 0, so that the arcs OP, PM make

up a quadrant, and sin PM =cos OP, so that

e =tan (angular radius of circle).

The eccentricity of a circle is thus not zero on the sphere, unless

the angular radius of the circle tends to zero.

Example

If 8 is a focus of a sphero conic, X the point where the focal axis meets

the directrix corresponding to X, C a centre on the focal axis, A a vertex of

the curve, lying between 8 and X
,
prove that

tan CM.cos C8—e sin CX
cot CA .sin C8—e cos CX

and hence that

cos 2 CS sin 2 CS
2

cos2 CA 8in 2CM *
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249. The sum and difference of the focal distances. To
prove that, if P be any point of a sphero-conic, S, H two non-anti-

podal foci, then the sum or difference of the arcs SP
,
HP is constant.

Suppose, to begin with, that S and H are foci lying within the

same oval of the sphero-conic (Fig. 77).

Let TP
,
TQ be two tangent great circles to the sphero-conic

from T, the points of contact P and Q being taken on the oval

belonging to S, H. Then the angle STP is equal to the angle HTQ,

since, by Art. 247, the perpendicular conjugates through T bisect

both angles STH, PTQ.

Let F
,
G be the points symmetrical to S, H with regard to TP,

TQ respectively. Then the angles FTP, PTS, HTQ, QTG are

all equal, and the angle FTS = angle HTG.
Adding angle STH we have angle FTH = angle STG

,
arc FT =arc

ST and arc TH = arc TG.

The spherical triangles FTH
, STG are congruent and arc

FH = arc SG.

Now if the tangent great circle PT move round the curve, TQ
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remaining fixed, G remains fixed and SG remains fixed, /. arc

FH ~ a constant length.

Joining PF, PS , PH, angle FPR^SPR by symmetry; and

SPR-TPH (Art. 247). Hence angle FPR =TPH or FPH is a

great circle. Thus SP +PH =FP +PH = FII ~ constant.

If we take two foci S', H not inside the same oval, then SP = semi-

circumference - S'P. Thus PH - S'P = constant.

We notice therefore that, from the point of view of focal distances,

antipodal ovals of a sphero-conic behave as opposite branches of a

hyperbola.

250. Cyclic planes of a cone and cyclic arcs of a sphero-conic.

A sphero-conic s determines with the circle O at infinity four

common dyads (A if A{) (A 2 ,
A 2 )

(B
x ,

B{)
(
B2 ,

B2 ), which if

s is real fall into conjugate imaginary pairs (A ly A\), (A 2 ,
A 2 )

and (B
y ,

B{), (

B

2 ,
B2 ). The six great circles which join pairs

of these four dyads, and which form the sides of the complete

quadrangle determined by s and O are termed cyclic lines or

arcs of the sphero-conic.

Clearly the intersections of opposite cyclic lines are dyad vertices

of the common self-polar triangle of s and O, that is, each pair of

opposite cyclic lines pass through a centre-dyad of the sphero-

conic.

Of the six cyclic lines, only two are real, namely those which

join the conjugate imaginary pairs, that is, the great circles

A^A 2A{A<1 and BiB2Bi'B2 . The others are conjugate imaginary

in pairs.

Any two dyads which are conjugate for both s and £)> that is,

any two quadrantal conjugate dyads of s, are conjugate for the

great circle pairs formed by opposite cyclic arcs.

Obviously two such quadrantal dyads are any two non-anti-

podal centres, C
x , C2 , say. These must be conjugate for the

great circle pair passing through C3 . Hence C30\, C3C2 are

harmonic with regard to the cyclic lines through C3 . Since C3G\,

C$C2 are rectangular, the cyclic lines are equally inclined to them.

Since the cyclic lines all meet the sphero-conic in imaginary

points, it is clear that the real cyclic lines do not pass through the

dyad centres (6\, 0/) interior to the ovals.

The reader will have no difficulty in proving that, in the case

where the sphero-conic s is a small circle, that is, has double contact

with O, four of the cyclic arcs coincide with the equator of the

centre of s , which is real if s is real, and the remaining two are the
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common tangent great circles of O and s, which are conjugate

imaginary if s is real.

Considering similarly the six faces of the common four-edge

of a cone of the second order and the spherical cone, we see that

a cone of the second order has six cyclic planes, which pass in pairs

through each of the three axes, each pair being equally inclined

to the principal diametral planes through that axis. Only one

such pair is real.

Since a cyclic plane contains two circular points at infinity on

the given cone, a plane tt parallel to a cyclic plane contains the

same two circular points, which therefore lie on the section of the

cone by 77
;

this section is accordingly a circle. Thus the cyclic

planes are planes parallel to the planes of circular section.

Let a be any plane through the vertex 0 of the cone, meeting

the cone in two generators a, b, and a pair of cyclic planes in rays

x
, y. There are two rays u, v in a which are conjugate for the

pencil of cones through the intersections of the given cone and the

spherical cone, lienee they are rectangular and harmonically

conjugate with respect to a
,

b. But they are likewise conjugate

for the plane-pair formed by the two given cyclic planes, since

these arc a cone of the pencil. Therefore u
,
v are harmonically

conjugate with respect to x, y, as well as with respect to a
,

6.

Being rectangular they bisect the angles between x
, ?/, and also

between a, b. Hence the angles between a and x are equal to the

angles between b and y.

Projecting this result upon the sphere, if a great circle meet the

sphero-conic at A, B and a pair of opposite cyclic arcs at XY, the

arcs AX, BY are either equal or supplementary. It will be noticed

that this result is analogous to a property of the asymptotes of a

hyperbola (Art. 67) so that the cyclic lines correspond, but only

in this limited sense, to the asymptotes.

EXAMPLES XIV

1. Discuss the nature of the homography on the sphere in which the self-

corresponding triangle is trirectangular, and the intersections of a great circle

through one of its vertices with the circle at infinity are corresponding

points.

Show how to construct, in this case, the great circle corresponding to any

given great circle, and the dyad corresponding to any given dyad.

Prove also that a second pair of conjugate imaginary points on the circle

at infinity correspond.

2. Show that properties of a spherical figure may be reciprocated by making
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a great circle correspond to its spherical poles and conversely. Either figure
may then be called the spherical polar figure of the other.

Prove that the spherical polar of a sphero-conic is a sphero-conic, the
cyclic lines of the one reciprocating into the foci of the other.
Show 'that this corresponds to polar reciprocation with regard to the

circle at infinity.

3. Through two fixed points of a sphere great circle arcs are drawn which
intersect at right angles. Prove that their intersection lies on a sphero-
conic passing through the two fixed points.

4. If a principal diametral plane of a cone of the second order meet the
cone in a , a

'

and p be any generator of the cone, the planes pa, pa' meet
either cyclic plane through the axis perpendicular to the given principal
plane in two lines at right angles.

5. If one side of a spherical triangle move so that the area of the triangle
remains constant, it envelops a sphero-conic of which the other two sides
(which remain fixed) are the cyclic lines.

[Deduce from Art. 249 by the method of Ex. 2.]

6. Prove that any sphere which passes through a section of a cone of the
second order made by a plane parallel to one cyclic plane meets the cone
again in a plane section parallel to the opposite cyclic plane.

7. Through any ray of a star through 0 two cones of a confocal system
having 0 for vertex can be described and these are orthogonal.

8. Prove that a quadrantal arc whose extremities move on a sphero-conic
envelops another sphero-conic, coaxial with the first one.

[For this arc touches the harmonic envelope of the sphero-conic and ©.]

9. Prove that the intersection of two perpendicular tangents to a sphero-
conic is a sphero-conic coaxial with the given one.

[Reciprocate on the sphere the result of Ex. 8 with respect to the circle

at infinity.]

10. Cx is the internal centre, C2 and C3 the two external centres of a
sphero-conic; OjC2 , C 1CZ meet the curve at non-antipodal points A x , A 2 ;

Bx , B2 respectively. P is a point on the curve, and the arcs CZP, C 2P meet
CtC2 , CXCZ respectively at M, N.
Prove the following formulae :

sin 2 CXM tan 2 PM tan 2 PN sin2 C
X
N

sin2 CXA X

+
tan 2 CXBX

~ l >
tan 2 CXA X

+
sin 2 CXBX

= lf

tan2 CXM tan2 CXN sin 2 PN sin 2 PM
tan2 CXA X

+
tan2 CXBX

~ sin2 CXA X
+

sin2 CXBX

= L

[Apply Carnot’s Theorem to the triangles CXCZM, CXC2N.]

11. If C is the internal centre of a sphero-conic, S a focus internal to the
oval belonging to C, CA and CB the semi-axes of this oval, CA being the focal

semi-axis, prove the following results :

sin2 CS sec2 CA — tan2 CA - tan 2 CB
e2— sec 2 CB- tan 2 CB cot2 CA.

Hence prove that CA is always greater than CB, and that the eccentricity
corresponding to the real foci is always real.
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12. Prove that the real cyclic arcs pass through the external oentre on the
focal axis, and meet this axis at an angle a given by

sin CB
sm a= ——77-7

.

sm CA
13. Prove that in the notation of Ex. 12

a= angle CSB,

where S is a real focus.

14. If two non-coplanar conics touch one another a cone of the second
order passes through both of them.

[Use Arts. 9, 43.]

15. Prove that two cones of the second order which touch one another
along the line joining their two vertices intersect in a conic.



CHAPTER XV

PROJECTIVE METHODS IN THREE DIMENSIONS

251. Order, class, degree. The order of a surface is the

number of points in which it is met by any straight line not lying

in it.

The class of a surface is the number of tangent planes which

may be drawn to it through any straight line not lying in it.

The degree of a skew or twisted curve (that is, a curve which

does not lie in a plane) is the number of points in which it is met by

any plane.

Note that this definition of degree coincides with the one

previously adopted for a plane curve, for the intersections of the

latter with any straight line in its plane may also be looked upon as

intersections with another plane through this straight line.

Note also that a plane section of a surface of the nth order is a

curve of the nth degree.

The following result will be assumed : three surfaces of order

m, n, j) intersect in mnp points, real or imaginary. This is evident

from analytical considerations if we remember that the equation

to a surface of order n is of the nth degree in the co-ordinates.

Example

Show that no non-degenerate twisted curve can be of degree less than three,

so that a curve of the second degree in space is necessarily a conic, unless it

breaks up into two skew lines.

252. Ultimate intersections and joins. Precisely as the

intersection of two near tangents a, t to a plane curve coincides in

the limit with the point of contact of a
,
when t coincides with a,

so the intersection of a plane 7r, which varies in a specified manner,

with a fixed plane a, when 77 ultimately coincides with a, coincides

in general in the limit with a definite line l of a, which depends on

the law of variation of 77, assumed here to depend on a single

parameter. This line l will be spoken of as the ultimate inter-

section of 77 and a, which may be expressed shortly by the notation

77a-*?.

318
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Again, if a variable point P approaches a line a in a specified

manner, and ultimately coincides with a point A of a, the plan aP
will in general approach a limiting position a, which will be spoken

of as the ultimate Join of P and a
,
with the notation Pa->a.

In like manner a variable line x will determine an ultimate join

Ax-+ql with a point A.

Similarly, a variable line x
,
not itself lying in a plane w, which

approaches in a specified manner the plane tt and ultimately coincides

with a line l lying in n, determines onrra point P, whose limiting

positionA, which necessarily lies on Z, will be the ultimate intersection

X7T-+A.

In general, however, if a different plane it' be taken through Z,

then the ultimate intersection xtt'->A' leads to a point A ' of Z,

different from A. There is no definite ultimate intersection of

x and Z, which must then be regarded as coinciding without inter-

secting.

But if, whatever the choice of the plane n through Z, the ultimate

intersection xtt-+A is always the same, x and Z will be said to

intersect ultimately, and A will be their ultimate intersection.

In like manner, if P be any point of Z, the plane Px will, in general,

approach a limit a, which contains Z. If this limit a is independent

of the choice of P on Z, the two lines Z, x w ill be said to be ultimately

coplanar, and the plane a is their ultimate join.

We will now prove that if a variable line x ultimately intersects

a line Z, then it is ultimately coplanar with Z.

Take any sphere centre 0, of unit radius
;
draw from 0 a radius

parallel to a given direction. Then the point in which this radius

meets the sphere gives a convenient representation of that direction ;

directions which are parallel to a plane are represented by points

lying on a great circle, which also represents the plane.

Assign on Z, x positive directions which ultimately coincide

;

this is done to avoid the ambiguity which would result from having

a given line represented by a dyad.

For clearness we will denote, on this occasion only
,
representative

points and great circles on the sphere (Fig. 78) by the letters which

denote the corresponding lines and planes in space.

An arbitrary plane fi is taken through Z, meeting x at M. A is

the ultimate intersection of x and Z, P any other point on Z, AM=a,
PM=p. Then, as x varies, p ultimately coincides with Z. Assign

on p the direction which ultimately coincides with that of Z. Let

A be the plane through Z which is parallel to both x and Z ;
this is

22
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represented by the arc xl on the sphere. A is clearly independent

of the choice of both p and P, and it will, in general, approach

some limiting plane {$ through l. Let 7r, a be the planes Px, Ax,

shown by the arcs px
,
ax in Fig. 78. These are independent of

the choice of p, and a is independent of the choice of both p
and P.

Clearly a
, p ,

l lie in p. Further, A is the limit of M, whatever

p may be since P remains constant as x varies, AM/MP
approaches zero in the limit, or, from the plane triangle AMP

,

sin pi/sin al approaches zero.

But, since in the spherical triangles Ipx
,
lax the sines of the sides

are proportional to the sines

of the opposite angles

sin pi sin Xn

sin xl sin pir
’

sin al sin Aa

sin xl sin px

Hence, by division

sin Xtt sin pen

sin Aa sin pn

approaches zero.

Now a approaches the

limit of the plane Ax
;

this

is, in general, a definite

plane y through l. Thus

the angle pcx. approaches py and sin pon approaches sin py f
which

does not vanish if p (which is arbitrary) is taken distinct from y.

And since sin Aa, sin pir are always less than unity, sin jaa/(sin Aa

sin pir) cannot approach zero, hence sin Xtt must approach zero.

Thus the plane 7r approaches parallelism with A, and therefore with /J.

Moreover the limit of 7r must contain l, and so is the actual plane /?.

Hence Px tends to the limit /? independently of the choice of P.

Since P may be taken as close as we please to A ,
considerations

of continuity indicate that the limit of Ax must also, in general
,

be ^3, so that jS and y are the same. If this is not the case, the

intersectionA will be regarded as singular, and a special investigation

is necessary.*

* It will be noticed that no use has been made, in the above proof, of the

datum that the limit ofxy is A . Thus in the definition of ultimate intersection

of x, l, one plane y might be exceptional. This would correspond to the
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Reciprocating the above theorem we see that ultimately coplanar

lines are also ultimately intersecting.

If a point P approaches a point A along a definite path p which

passes through A, then the ultimate join AP is the tangent to p
at A . If a second point Q also approaches A along a path q ,

then

the ultimate join AQ is the tangent to q at A. The plane APQ
will then approach a limiting position, namely the plane determined

by the tangents to p and q at A. This is the ultimate join of the

three points APQ . It may happen that the paths p and q coincide ;

in this case we may first make P coincide with A
;

the ultimate

join then contains the tangent t at A to p and a neighbouring

point Qy
and the ultimate join Qt is the ultimate join of the three

coincident points.

253 . Curves and developables. If P is a given point on a

twisted curve s, Q a variable point, then the ultimate join PQ ,

when Q coincides with P, is the tangent p to the curve at P. If R
be any other point of the curve, then the ultimate join PQR->n9

or pR->TTy when Q and R coincide with P, is termed the osculating

plane to the curve at P, and may be described as the plane through

three coincident points of the curve at P.

Lines through P perpendicular to the tangent at P are termed

normals to the curve
;
of these, the one which lies in the osculating

plane is called the principal normal, and the one at right angles

to the osculating plane the binormal. The plane through P per-

pendicular to the tangent is the normal plane at P. The plane

containing the tangent and binormal is the rectifying plane at P

.

If we apply to such a twisted curve s the principle of duality in

space (Art. 135), we obtain the envelope a of a plane 7t depending

on a single variable parameter. This envelope is termed a

developable. The ultimate intersection of n with a neighbouring

tangent plane which tends to coincide with 1

r

is a line p' of 7
r'

which is the line of contact of 7
r' with its envelope and so is a

generator of or'. Also 7/ is clearly the tangent plane to o' at every

point T' of p\ If now q' is a neighbouring generator, then, as

q' approaches p', the lines joining T' to the points of q' become

tangents to o in the limit and lie in the tangent plane 71 at T',

so that 7t is the limiting position of the plane T'q
r

.

case where A ,
in the definition of ultimate join, is an exceptional point.

If the definitions are modified in this sense, the proof given in the text is

made general. It is better, however, not to do this, and to regard the ultimate

intersection (or ultimate join) as of singular type in the exceptional cases.
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Hence, by Art. 252, since tt' is independent of the choice of T'

on p'
9
the generators p', q' ultimately intersect. If their ultimate

intersection is P', then P' is (again by Art. 252) the ultimate

intersection of q

'

with ir', and, since q' is itself the ultimate inter-

section of tangent planes k\ p'
9
therefore P' is the ultimate inter-

section of three coincident tangent planes tt\ k', p : this follows by

reciprocating the statements in Art. 252 concerning the ultimate

join of three coincident points. The locus s' of P' is termed the

cuspidal edge of the developable o'.

Returning now to the original curve s
,
where P corresponds

to 7t, let Q, R correspond to k\ p' respectively. Thus P' corresponds

to the ultimate join of three coincident points P, Q ,
R on s

,
that is,

to the osculating plane tt of s at P. The tangent p at P to s corre

sponds to the generator p' of the developable, and a neighbouring

tangent q corresponds to the neighbouring generator q'. Since

p\ q' ultimately intersect, so do p and q, and we get the result that

tangents to a twisted curve determine an ultimate intersection

and an ultimate join.

Now the ultimate join of p\ q' has been shown to be tt' and their

ultimate intersection P'. It follows that the ultimate intersection

of p 9 q is the point of contact P of p ,
and their ultimate join is the

osculating plane tt at P.

But further, it is now clear that we may look upon a twisted curve

s as being generated by the ultimate intersections of its system of

tangent^ p. The correlative twisted curve s' is therefore generated

by the set of corresponding lines p' as tangents. Thus the tangent

at P' to the cuspidal edge of the developable o' is the generator p
r

of the developable.

Now p' is the ultimate join of two points P' of the cuspidal edge

in question, which approach coincidence. Hence p is the ultimate

intersection of two osculating planes tt of s
,
which approach coin-

cidence. Accordingly two neighbouring osculating planes at P
ultimately intersect in the tangent at P.

Moreover the planes tt themselves envelop a developable, which is

termed the osculating developable o of the curve s. There is a

complete reciprocity between the two systems, and the curve s is

the cuspidal edge of its osculating developable. ,

The meaning of the term developable applied to such a type of

surface may be illustrated as follows, but the argument is not to be

taken as rigorous.

A succession of planes tti, tt2 ,
7t3 , etc., selected in order, according
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to a law of variation involving a single parameter, determine a

succession of intersections 77^2 ~^i2i 7r27r3 ^923* etc. Successive

lines such as 2 , g23 meet at a point *=Pi 23 , and so on.

The set of lines g are edges or creases of a polyhedral surface
; this

surface may be unfolded about the successive lines g and so spread

out or “ developed ” upon a plane, the skew polygon formed by the

g ’s becoming a plane polygon.

If now the number of planes it is indefinitely increased, successive

planes being taken closer and closer together, we approach, in

the limit, a continuous distribution, the g’a tending to ultimate

intersections, the points P to points of the cuspidal edge, which then

becomes the limit of the skew polygon, and the polyhedral surface

to a developable, which can still be unfolded into a plane.

The class Of a developable is defined to be the number of

tangent planes to the developable passing through a general point

of space.

The class of a twisted curve is the number of osculating planes

which pass through a general point. It is clearly identical with the

class of its osculating developable. It should be noted that the

order of a developable (the number of points in which it is met by
any straight line) is necessarily equal to the number of its generators

which intersect any straight line. If we define the order of a twisted

curve as the number of tangents which meet any straight line,

the order of a developable will be the same as the order of its

cuspidal edge, though different, in general, from the degree of

the latter.

The normal planes to a twisted curve s form a set of planes

depending a single parameter (which might be the arc of the curve).

These planes therefore envelop a developable, which is termed

,the polar developable of s. The intersection of the normal

planes at P and Q is at right angles to the tangents p, q at P and Q ,

Proceeding to the limit, since p, q are ultimately coplanar, the

ultimate intersection of the normal planes when Q approaches P
is perpendicular to the ultimate join of p , q, that is, to the osculating

plane at P. Any generator of the polar developable is therefore

parallel to the binormal at the corresponding point of the curve.

Similarly the rectifying planes at points of a curve envelop a

developable, termed the rectifying developable. The generators

of the rectifying developable are the ultimate intersections of the

rectifying planes ; the generator corresponding to a point P of the

curve is said to be the rectifying line at P.
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254. Radii of curvature and torsion ; osculating cone.

The limiting position of the circle through three neighbouring points

P, Q, R of a curve s, when Q and R coincide with P, clearly lies in

the osculating plane at P. This circle, its centre C and its radius

P are termed the circle, centre and radius of curvature of s

at P.

If we make R first coincide with P, it follows that the circle of

curvature is the limit of the circle which touches 8 at P and passes

through Q ,
and therefore C lies on the normal plane at P. But, if

we make R first coincide with Q ,
the circle of curvature is the

limit of the circle which touches s at 0 and passes through P.

The centre of this last circle lies on the normal plane at Q. Hence

the centre of curvature C
,
which lies on the normal plane at P,

is the limit of a point on the normal plane at Q. It must therefore

lie on the ultimate intersection of the normal planes at P and Q
and so is the intersection of the osculating plane at P with the

corresponding generator of the polar developable.

If, in like manner, /z, v, tt are three osculating planes of s
,
four

right circular cones can be described, with fiw as vertex, to touch

them
;

if /z, v are made to coincide with tt, the ultimate intersection

JJLV7T becomes P, where P is the point of s at which tt is the osculating

plane. Also, when /z, v coincide with tt, three of the above right

circular cones shrink into line-cones along the tangent at P, but

one remains a proper cone of finite vertical angle. This will be

termed the osculating cone at P to either the curve s or its osculat-

ing developable
;

it is easily seen to touch the osculating plane

along the tangent at P.

The same kind of argument which has been employed above to

show that the centre of curvature lay on the ultimate intersection

of two neighbouring normal planes which tend to coincide will

show that the axis of the osculating cone is the ultimate inter-

section of neighbouring rectifying planes which tend to coincide.

This axis is therefore what has been called the rectifying line in

Art. 253. Thus the rectifying line at P passes through P.

If 7
)
is the angle between the binormals at P and Q,

or, what is

the same thing, between the osculating planes at P and Q ,
the limit

of the ratio (arc PQ)/rj when Q tends to coincide with P is termed

the radius Of torsion of s at P, and is denoted by a.

The sphere which has four-point contact with s at P is the

osculating sphere at P, and its radius is the radius of spherical

curvature, which we will denote by R. This sphere is the limit of
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the sphere through P and three other points Q, S, T of the curve *,

when Q, S, T coincide with P. It is also the limit of the sphere

which touches s at P and Q and therefore has its centre K on the

generator of the polar developable corresponding to P. We may,
however, go further than this. For by making T coincide first with

P, or with Qy
or with S

f
we find that K is the centre of a sphere

which is the limit of all three spheres which pass through P, Q> S
and touch s at one of these points. Thus the normal planes at

each of P, Q, S pass through K in the limit, so that K is the ultimate

intersection of three coincident tangent planes of the polar develop-

able and so is the point corresponding to P on the cuspidal edge of

this developable.

Since the centre of curvature 0, as well as K> lies on the generator

of the polar developable, which is perpendicular to the plane of the

circle of curvature, a circle with C as centre and passing through

P will lie entirely on the sphere centre K passing through P.

Hence the circle of curvature is a small circle on the osculating

sphere, whose spherical centre is the dyad determined by the

diameter parallel to the binormal at P.

255. The spherical indicatrix : relations between radii of

curvature and torsion. If through any point 0 half-rays OT,
ON, OB are drawn parallel to the tangent, principal normal and
binormal at a point P of s

,
in senses defined, in the case of the

tangent by a prescribed sense of description of the curve, in that of

the principal normal by the sense from P towards the centre of

curvature, and in that of the binormal by a right-handed rotation

of ON through a right angle about OP, these half-rays meet a

given sphere of centre 0 and arbitrary radius at points T, N, B
(Fig. 79). The successive positions of the trirectangular spherical

triangle TNB on the sphere, as P moves along the curve 8, constitute

the spherical indicatrix of s.

Let now T'N'B' be a near position of TNB
,
corresponding to a

point P' on the curve near to P. The arcs TN, NB
t
BT represent,

on the indicatrix, the osculating, normal and rectifying planes at P.

If these arcs meet the corresponding arcs T'N', N'B', B'T at

Xy Yy Z respectively, then, since the ultimate intersections of

the corresponding planes are the tangent at P, a line parallel to

the binormal at P, and the axis of the osculating cone at P, the

points X, Y, Z approach T, B, A in the limit, where A represents on

the indicatrix the axis of the osculating cone. Also, the angles at

X and Y being very small, the arcs TT', BB* (not shown in Fig. 79)
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diverge very little from the arcs T'X, XT and BY, YB\ and so

are approximately at right angles to both BT and B'T'. Thus, if

<f>
is the angle at Z, by a well-known result in spherical geometry,

we have, to a first approximation

arc TT =<f>„sin ZT
and arc BB' =<^.sin ZB =<f>.cos ZT.

t, . . arc TT'
By division jr-jr. =tan ZT.

arc BB
But if 0 be the angle between the tangents at P, P' (which are here

not the points shown in Fig. 79) and rj the angle between the

binormals

arc TT' 0 /arc PP'\ //arc PP'\

arc BB'~ V
~\

v J/\ 0 )
/arc PP'\ //arc PP'\

n.™
li-)/(- r)-toZi

T

and, proceeding to the limit

cr/p=tan /4T=tan a (1)

where 2a is the vertical angle of the osculating cone. This is a

well-known formula connecting a and p.
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Consider now a curve s which lies on a sphere ; then this sphere

is the osculating sphere at every point of the curve, and may be

taken as indicating sphere
;

P, P' are now points on the sphere

itself and they are the points shown in Fig. 79. Since the normal

plane at P passes through the centre of the osculating sphere, P
lies on the arc BN (Fig. 79) and similarly P' lies on the arc B'N'.

Also B and B' are the spherical centres of the circles of curvature at

P, P'. And since the circle of curvature at P is the limit of the

small circle touching the curve at P and passing through P',

BP = BP' to the first order of approximation.

With the convention adopted, P, P' are on opposite sides of B> B'

to N, N ' respectively. Thus the difference between the angular

radii BP, B'P' of the circles of curvature is to the first order equal

to BB\ The actual radii are given by

p =R sin BP (2)

p' =R sin
(
BP-BB')

so that, to the same order of approximation,

p - p = - R cos BP.sac BB'

= -Rrj.cos BP.

Dividing by arc PP'

arc PP'

Rt]

^Tpp> cos BP

and in the limit

— cos BP

or - R cos BP (
3

)

Squaring and adding (2) and (3) we obtain

R2 =p2+a2(X) (4)

for any curve lying on a sphere.

If now two curves have three-point contact at a point P, they

have the same osculating plane and circle of curvature at P. If

they have four-point contact at P, they have also the same osculating

sphere at P.

But further a curve k which has four-point contact with 8 at P
is the limit of a curve k

r

passing through P and through three

neighbouring points Q, S, T on s. Making the three latter points
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coincide at Q, the curve k' has the same osculating plane and circle

of curvature at Q as the curve s. In the limit k has the same
osculating plane and circle of curvature as s

, to the first order

approximation, at points in the immediate neighbourhood of P,

as well as at P itself. Thus k has also (i) the same radius of

dp
torsion, (ii) the same as s.

By taking the curve k to lie on the osculating sphere of s at P,

the formula (4) holds for] it. But since every quantity occurring

in the formula is the same for k and s, the formula also holds for 8,

and therefore for any curve whatever. Formula (4) then gives a

second fundamental relation between R, p, o.

It is sometimes stated * that there is no actual circle connected

with the curve, whose radius is equal to the radius of torsion.

This, however, is not the case
;

for formula (1) shows that if with

P as centre a sphere is described to pass through the centre of

curvature C and to meet the axis of the osculating cone at U
,

the tangent plane at U to the sphere just mentioned meets the

osculating cone in a circle, whose radius is the radius of torsion.

256. Quadrics. A quadric is a surface of the second order.

Every plane section of a quadric is a conic. There are three main
types of quadrics, according to the nature of their intersections

with the plane at infinity. The quadrics of the first type do not

meet this plane in real points
;
they lie entirely at a finite distance

and evefy plane section of them is an ellipse
;

they are called

ellipsoids. The quadrics of the second type meet the plane at

infinity in real conics but do not touch it, and are called hyper-

boloids. The quadrics of the third type, wrhich touch the plane at

infinity, are called paraboloids. Subclasses of these exist, which

will be described more fully in Art. 257.

Notice that the sphere is a special case of the ellipsoid and
the (real) cone of the second order a special case of the hyperboloid.

A quadric being a surface, we shall denote it by a Greek letter,

e.g. The equation of a surface of second order contains ten

coefficients, the nine ratios of which determine the equation. A
quadric is therefore, in general, determined by nine points.

257. Generators and tangent planes of a quadric. Consider

a point P on a quadric if/. Let tt be the tangent plane to i/j at

See Salmon, “ Geometry of Three Dimensions,” 4th ed., p. 335.
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P. Then n meets 0 in a conic s. But since every line through P
in 77* is tangent to ip, it is also tangent to s, which must accordingly
reduce to a line-pair p, q. Thus through any point P of the quadric
there pass two lines p, q which lie entirely in it. These lines p y q
are termed generators of the quadric.

Let Pq be a given point of tp
; p0i q0 the two generators through

P0 . If Px be any other point on the generator p0> then p0 is one
of the two generators through P

x
. The second generator is a line

Ji- Also q x cannot intersect q0> for then p0) qQy qx would be the sides

of a plane triangle and we should have a quadric intersecting a plane

in a triangle, which is impossible.

Hence all the generators qx ,
which intersect p0f do not intersect

one another.

Similarly all the generators px> which intersect </0 ,
do not intersect

one another.

The two generators through any point Q of the quadric belong

one to the system p and the other to the system q. This is clear

from what has just been proved if Q lies on p0 or q0 . If Q do
not lie on p0 or q0y the plane p0Q meets the quadric in a conic,

which consists partly of p0 and so must be a line pair. The other

line of the pair, on which Q must lie, is coplanar with p0y and there-

fore meets p0 at a point R. Thus Q lies on the generator of the

system q through R. Similarly Q lies on one generator of the

system p.

It follows that each of the two sets of generators p, q contains

all the points of the quadric.

Further, every generator p meets every generator q. For let p x , q x

be the two generators through any point Px of the quadric, and q2
any other generator of the system q. As above, the plane P

xq2
meets the quadric in a line-pair, of which q2 is one member. The
other is a generator which must meet q2 and also pass through Px

and therefore is one of the generators through P
x . Since qXi q2

cannot meet, it must be p x . Thus q2 must meet any generator p x
of

the system p .

If one generator, say p ,
of a real quadric is real, then the second

generators q at the real points of p are necessarily real, and the

generators p through the real points of a real generator q are likewise

real. Examination of the arguments given previously shows that

the generators p and q through any real point of the quadric are

then real.

It follows that, if the two generators through any real point
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of the quadric are imaginary, the quadric can have no real generators.

On the other hand a quadric with real generators has any number

of imaginary generators, but these pass through imaginary points

of the quadric.

If a quadric has real generators, the points at infinity on these

generators are real points of the quadric. Such a quadric cannot

then be an ellipsoid. On the other hand a quadric may have

real points at infinity and not have real generators. If the quadric

be a hyperboloid and the tangent planes through the points at

infinity meet the quadric in real lines, the quadric has real generators

and is called a hyperboloid of one sheet ;
but if they do not

meet the quadric in real lines, the quadric is called a hyperboloid

of two sheets. The reason for these names will be apparent

later.

In the case of paraboloids, we have also two classes, according as

the plane at infinity meets the quadric in real, or in imaginary,

lines at infinity. In the first case we are said to have a hyperbolic,

in the second case an elliptic paraboloid.

The imaginary generators of a sphere have, however, an important

property, namely, that they are the circular lines through P in

the tangent plane at P. For clearly they must pass through the

points at infinity on the sphere, lying in the tangent plane at P,

and these points must be on the circle at infinity (Art. 243) and

therefore circular points.

An important particular case is when two generators through a

point P of the quadric are coincident. In this case the quadric

must reduce to a cone of the second order. This we can prove as

follows.

Let (p, p) be the coincident generators through P, Q any other

point of the quadric 0, not lying on p. As before, the plane pQ
meets the quadric in a line pair (p, q )

and q both meets p and

passes through Q. Let it meet p at V. Let r be the second

generator through Q, and let it meet the tangent plane tt at P in

R. Since R is a point of the quadric 0 lying in tt and all the points

of 0 in tt lie on p (doubled), R is a point of p, so that r meets p at R .

Thus, if R is distinct from F, we have a triangle VQR lying entirely

in a quadric, which is impossible, unless 0 breaks up into two planes.

Hence r must pass through F.

Thus all the generators of the quadric are double and any two
of them intersect. Therefore, by Art. 7, they either all pass through

the same point F, in which case the quadric reduces to a cone of the
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second order having V for vertex, or they all lie in one plane in

which case the quadric reduces to a pair of coincident planes.

In the alternative, when \p breaks up into two planes, we note

that a pair of planes is a particular case of a cone of the second

order
;

in this case there is a whole pencil of generators through

any point of the quadric, and two such pencils through any point

common to the two planes. If any generator other than this line

common to the two planes counts twice, the plane-pair must
reduce to a pair of coincident planes.

258. Focal spheres. A well-known property of the foci of a

conic can be at once deduced from the result that the generators

of a sphere are circular lines.

Let k be a right circular cone, or a sphere touching k along a circle c,

a any plane touching a at F and meeting k in a conic s. Then F
is a focus of s. If x, y are the generators of a through F

,
these

generators clearly touch k at the points 7, J where they meet the

circle c, which they must meet, since x, y , c lie in the sphere cr.

Hence, since they lie in a, they must touch the intersection of a and

k ,
that is the conic s. Hence x

, y arc the two tangents from F
to s.

But x, y ,
being generators of a sphere, are circular lines in a.

Hence, by Art. 145, F is a focus of s. Moreover /, J are clearly

points common to a, k and cr, that is, to a and c. Accordingly

they must lie on the intersection of a with the plane of the circle c .

But I, J are the points of contact of x, y with k
,
and therefore

with 5, so that 1J is the polar of F with respect to s
,
and so is the

directrix corresponding to F.

We have therefore the following construction for the foci of a

plane section of a right circular cone : describe the spheres touching

the cone and the plane
;

their points of contact are foci.

Two such spheres are real, namely those which touch the cone

internally
;

their points of contact are the real foci. If the plane

meets one half-cone only, the spheres lie on the same side of the

vertex of the cone, but on opposite sides of the plane
;
the conic s

is then an ellipse. If the plane meets both half-cones, the spheres

lie on opposite sides of the vertex, but on the same side of the plane
;

s is then a hyperbola. If the plane is parallel to a generator, only

one proper real sphere exists and s is a parabola.

259. Reguli. The generators p of Article 257 are said to form a

regulus on the quadric ip. Similarly the generators q form a regulus.
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The two sets are said to be complementary reguli. The lines of

either reguius may be spoken of as transversals of the other.

A reguius determines on any two transversals homographic

ranges.

For let a
,
b

9
c, d be any four lines of the reguius, x, y two trans-

versals belonging to the complementary reguius. Let a, b
,
c9 d

meet x at A it Blf Ci9 Dx
and y at A 2 ,

B2i C2i D2 . Cut the quadric ip

to which the reguli belong by a plane a. This meets ip in a conic s,

which meets a, b
9
c

,
d, x

9 y at A, B, C
9
D

,
X, Y respectively.

The planes x (abed) form an axial pencil which meets a in the flat

pencil X(ABCD). Similarly y(abcd) form an axial pencil meeting

a in Y(ABCD).

Because X, Y }
A 9 B, C ,

D lie on a conic

X{ABCD} = Y{ABCD} 9

and therefore

x{abcd) =y{abcd}.

Cutting the axial pencil of axis x by y ,
and that of axis y by x

,

we have at once

which shows that the ranges on the two transversals are equi-

anharmonic and therefore homographic.

This common cross-ratio may be called the cross-ratio of the four

lines of the reguius. The reguius, like the range, the flat pencil

and the axial pencil, is one of the standard forms. It may be

reckoned as a form of the second order, since it lies in a surface of

that order.

Two reguli will be said to be homographic if corresponding

lines can be related by a one-one algebraic correspondence.

They meet any two planes in homographic ranges of the second

order and any generators of their complementary reguli in

homographic ranges of the first order.

Not only does a reguius determine homographic ranges on two

transversals x9 y, but it determines with x, y two axial pencils

homographic with these ranges and with one another. This follows

immediately from the proof given above, since we have seen that

x{abed] =y{abed} = {AiBl
C

l
D

l } = {A2B2C2D2}

.

Reguli will be said to be cobasal if they belong to the same set of

generators of a quadric. Two homographic cobasal reguli have

two self-corresponding lines, which may be real, coincident or

imaginary.
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Similarly we may have an involution regulus, which has two
distinct double rays, real or imaginary.

260. Quadric as product of homographic ranges or axial

pencils. If, in the theorem of the last Article, we denote by p a

variable line of the regulus which meets x and y at Ph P2 we have

proved that

FiMiy
and Ajp^yljp]-

Thus any generator p of a quadric (other than a cone) is (i) the

join of corresponding points of two homographic ranges on two

generators of the complementary system, (ii) the meet of corre-

sponding planes of two homographic axial pencils through two

generators of the complementary system.

The quadric is therefore obtained as the product of two homo-

graphic ranges on skew lines, or of two homographic axial pencils

with non-intersecting axes.

Conversely, any such product must necessarily be a quadric.

Take the second case first. Let 7r, 7/ be corresponding planes

of the axial pencils, meeting any straight line l at P, P'. Then

[P]7^[7r]7\[7r']“[P']. The ranges [P], fP'J have two self-corre-

sponding points, which are the intersections of l with the locus :

the latter is therefore of the second order, and thus a quadric.

The first case is immediately reducible to this
;

for, let PjP2 ~p
and let the bases of [Pj], [P2]

be x, y respectively. Then p is the

intersection of corresponding planes in the homographic axial

pencils #[P2], y[P\] and generates a quadric by the preceding.

We may notice that the quadric, in both cases, contains the

bases x, y, and that the points P1? P2 are the points of contact of

the planes xp
, yp ,

which are tangent planes to the quadric. Hence

we obtain the following theorem : the tangent planes to a quadric

at the points of a generator form an axial pencil homographic

with the range of their points of contact.

We are now in a position to free our definition of the regulus

from any necessary connection with a quadric. For let x
, y ,

z

be three non-intersecting lines in space (called directrices). Take

any point P of x. The plane Pz meets y at one point Q only and

PQ meets z at a unique point R. There is accordingly a unique

straight line PQR meeting x, y, and z.

That this determines a regulus according to the previous definition

is immediately obvious. For the relation between P and Q is
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clearly one-one and algebraic ;
therefore [P]^[Q] and PQ is a

generator of a quadric and therefore a line of a regulus.

Incidentally we see that a quadric is uniquely determined by

any three generators of the same system.

Examples

1. Show that a regulus projects from any point upon any plane into a

homographic pencil of the second order.

2. Two fixed straight lines a and b meet a conic s, but are not coplanar with

s or with each other. Show that a straight line which meets 8, a, b describes a

quadric.

3. Two skew lines a> b meet a conic 1c at points A , B, but are not in the

plane of the conic. If the unique transversal to a and b from a point P of

the conic meets them at Q , R respectively, prove that, when P describes the

conic, Q and R describe projective ranges.

In the case when k is a parabola, and a and b are parallel to a plane y
through the axis of the parabola, prove that the ranges [©], [i?] are similar ;

and that any plane parallel to y is met by the transversals PQR in the

points of a straight line.

4. If kv 1c 2 are two plane sections of a quadric ip. and any generator of ip,

of one system, meets 1c1 at Px and 1c2 at P2 ,
prove that [JP

X]
[-P

2]
2

-

261. Homographic complementary reguli. Consider a plane

section s of a quadric 0. If wc relate corresponding rays p, p'

of two complementary reguli on 0, so that they intersect at a

point P of s, then these reguli will be homographic.

For a generator p of 0 cannot meet 5 at more than one point,

otherwise the plane of s would meet 0 in both s and p ,
which is

impossible. Hence, p being known, P, and therefore p\ is uniquely

determined
;
and conversely. Therefore the reguli are homographic.

Conversely the product of two homographic complementary

reguli is a conic section of the quadric 0 in which the reguli lie.

For let a
, b ,

c and a', V ,
c

f

be the three (arbitrarily selected) corre-

sponding rays which define the homography. Let A ~aa', B~W,
C~cc\ then BC, CA

}
AB are not generators of 0, and the plane ABC

meets 0 in a proper conic s .

If now p , p' be two corresponding rays of the reguli, meeting

s at P, P', we have a'[p] so that, taking sections of these

axial pencils by the plane ABC, A[PY^A[P t

] and [P]2tt[P']2 .

But the last two ranges of the second order have clearly A, B, C
for three self-corresponding points. Hence the ranges must coincide,

and P = P' or the corresponding rays p, p' meet on the conic s .
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262. Class of a quadric. Let a quadric be defined by the

homographic ranges [P], [P'] determined by one of its reguli on
two generators x9 x' of the other. Let u be any straight line.

The cobasal homographic axial pencils w[P], u[Pr

] have two self-

corresponding planes. Each one of these contains a generator

PP' of the quadric. It therefore contains a second generator and
touches the quadric at their intersection.

Thus through any straight line u two tangent planes can be

drawn to a quadric or a quadric is a surface of the second class.

Conversely every surface of the second class is a quadric. For,

by the principle of duality in space, the reciprocal of any surface

of the second class is a surface of the second order. Since there

are two tangent planes to this latter surface through an arbitrary

line, any line u will meet the original surface of the second class at

two points. Hence this surface is a quadric.

263. Degenerate quadrics. Precisely as the conic, considered

as a locus, may degenerate into a line-pair, or, considered as an
envelope, may degenerate into a point-pair, so the quadric may
degenerate in different ways, according as we consider it generated

by two homographic axial pencils, or by two homographic ranges.

Taking two axial pencils, the first type of degeneration which

presents itself is when the axes intersect, that is, the bases of the

axial pencils are coplanar. Corresponding planes will then

(Art. 240) meet in generators of a cone of the second order, which

is thus one type of degenerate quadric. It retains the typical

property of the quadric that it is met (in general) by any straight

line in two points
; but it is no longer true that two tangent planes

can be drawn to it through any given line. This is only possible

when the line passes through the vertex. In all other cases the

plane through the given line and the vertex of the cone has to be

regarded as a double tangent plane, in order to maintain artificially

the quadric property.

If, further, the two axial pencils have a self-corresponding plane,

the other corresponding planes meet on a fixed plane, and the cone

of the second order breaks up into a plane-pair. This is still a

locus of the second order. In this case no tangent plane can in

general be drawn through an arbitrary line, even with the very

special interpretation given in the last paragraph. No class can

therefore be ascribed to the plane-pair.

Now consider two homographic ranges. If their bases are made
coplanar, the generators of the quadric lie in a plane, which they

23
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entirely fill up, with the exception of the inside of this conic

envelope. We may think of the quadric surface as pressed flat,

so as to form a double-sheeted plane, with a hole in it in the shape of

the eonic, the two sheets joining up on the edge of the hole. Such a

quadric will be called a disc quadric. A conic, so considered, is

therefore a degenerate quadric. It remains a surface of the

second class, for two tangent planes can be drawn to it, in general,

through any line in space, but it can only be considered of the

second order if, by an artificial convention, we consider an inter-

section with the plane of the conic to be double, in view of the two
sheets above mentioned.

If the two coplanar ranges have a self-corresponding point, the

conic in question itself degenerates into a point-pair, the hole

shrinking to a slit in the plane, or the disc quadric to a thin rod,

connecting the points of the pair. This does, indeed, still give us an

envelope of the second class.

It is also clear that the cone of the second order can degenerate

into a line-pair, and so can the conic. But for the cone of the

second order to degenerate into a line-pair, it must first arise as

the product of two homographic flat pencils of a star
;
the product

of two homographic axial pencils of a star cannot produce a line-

pair. On the other hand, a conic obtained as the product of homo-
graphic ranges cannot degenerate into a line-pair. If therefore we
start from the quadric as above, we cannot arrive at the line-pair.

Moreover it is clear that, in general, a straight line in space does

not meet a line-pair at two points, nor can two planes be drawn
through it to touch the line-pair. The line-pair, considered as a

three-dimensional locus, is neither of the second order, nor of the

second class (although it is of the second degree ), and has no claim

to be considered as even a degenerate quadric.

And this indeed is borne out by analytical considerations, for

whereas the cone and plane-pair can be represented by a single

equation in point-co-ordinates, and the conic and point-pair by a

single equation in plane-co-ordinates, the line-pair cannot be so

represented, but always needs two equations to specify it.

264. Pole and polar plane. Let P be any point and let any
ray through P meet a quadric at R

,
S. If P' be the point har-

monically conjugate to P with regard to R, S, then P' lies on a

fixed plane.

For take two rays through P, PR
xSi, PR2S2 and let P\P2

be the corresponding positions of P'. Join P\P2 . Then if a be
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the plane of the two rays PR
XSU PR2S2 , P\P2 is the polar of

P with regard to the conic in which a meets the quadric. Hence
the locus of points P' corresponding to all rays through P which

lie in a is the straight line P\P2 . Thus the straight line joining

any two points on the locus lies entirely in the locus. But this

property defines a plane.

This plane is called the polar plane of P with regard to the

quadric.

When the points R
,
S coincide, P* coincides with them. Thus

the tangent cone from P touches the quadric along a plane

section. This cone is therefore of the second order.

If P lie on the polar plane p of R, and PR meet the quadric at

(S, T), then (P, R) are harmonic conjugates with regard to S, T
and therefore the polar plane it of P passes through R.

P
,
R are conjugate points and 7r, p conjugate planes with regard

to the quadric.

Consider the poles of planes through P. These lie on its polar

plane 7r. Similarly the poles of planes through R lie on p. Thus the

poles of planes through PR lie on a fixed line rrp.

Hence if S be any point of PR, S' any point of 7rp, SS ' is har-

monically divided by the quadric.

The symmetry of this last relation shows that the poles of planes

through 7770 lie on PR.

Two such lines PR, np are said to be polar lines with regard to

the quadric.

The polar plane of a point P on the quadric is the tangent plane

at P . For the polar plane of every point R in the tangent plane at P
passes through P.

Conjugate lines with respect to a quadric are lines such that

each meets the polar line of the other. For, if p meets the polar

line q' of q, pq' determine a plane n whose pole P lies on q. But,

since p lies on 7r, the polar line p' of p passes through P, therefore

q meets p'
y and the condition is symmetrical, as stated. Clearly, if

P is any point, 7r its polar plane with respect to the quadric, any

line through P is conjugate to any line of 7t.

A line is also said to be conjugate to any point in its polar line,

and to any plane through its polar line.

If x, y are polar lines, then y is the chord of contact of tangent

planes through x. For let a, r be the tangent planes through x,

touching the quadric at S, T. Since a is the polar plane of S and r

the polar plane of T
,
ST is the polar line of err, that is, of x .



338 PROJECTIVE GEOMETRY

If 77, p are two other planes through x
, conjugate for the quadric,

their poles P, R lie on the polar line ST
;
but P lies on p and R

lies on 7r, therefore P, P are the meets of ST with p, 77 respectively.

Because P is the pole of 77
,
ST is harmonically divided by P and 77,

that is, cr, r are harmonically conjugate with respect to 77
, p. That

is, two conjugate planes are harmonically conjugate with
respect to the two tangent planes through their intersection.

It follows that conjugate planes through a line x form an involution

axial pencil, of which the double planes are the tangent planes to the

quadric through x. Similarly conjugate points on a line x form an
involution of which the double points are the intersections of the

quadric with x. As in Chapter IV, the polar planes 77 of points P
of a range on a straight line form an axial pencil homographic
with the range, the bases of the two forms being polar lines.

If we cut the axial pencil [7r] by a plane a, and join the pole A of a
to the range P, we obtain two homographic flat pencils a[V], A[P],
in which corresponding lines are polar lines. Thus, to any flat

pencil corresponds homographieally the flat pencil of its polar

lines. The planes of two such pencils are conjugate planes, since A
,

the pole of the plane a, lies in the plane of the other pencil, and
likewise the vertices are conjugate points.

Two such polar flat pencils cannot be cobasal unless their plane a
is a tangent plane and their vertex A its point of contact. In this

case a pair of polar lines are mates in an involution, of which the

generators through A are the double lines.

Examples

1. If two polar lines intersect, prove that their plane touches the quadrics
with their intersection as the point of contact.

2. If a skew quadrilateral is formed of four generators of a quadric, two of
each system, prove that the joins of opposite vertices are polar lines for the
quadric.

3. Show that polar lines for a sphere are perpendicular.

4. Prove that a line which is its own polar line with respect to a quadric
is a generator of the quadric, and, conversely, that every generator of the
quadric is its own polar line.

5. Show that two planes conjugate for a quadric are conjugate for every
tangent cone whose vertex lies on their intersection.

6. If two intersecting lines are conjugate for a quadric, prove that they
are conjugate for (1) the conic intersection of the quadric by the plane through
the lines, (2) the tangent cone to the quadric from the intersection of the
lines.

7. If a line is self-conjugate for a quadric, prove that it is a tangent line

to the quadric.
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265. Twisted cubic. A twisted cubic is a curve of the third

degree : it may be obtained as the product of three homographic

axial pencils. For take any three chords a
, b, c of the twisted cubic.

Let P be any point on the curve
;
denote the planes aP

,
bP, cP

by tti, 7

r

2 , 7

r

3 . Now since a already meets the cubic at two points

(being taken a chord), a plane tt
1
through it can meet the cubic

again at one point P only. Thus when 77^ is given, P, and therefore

7r2 and 773, are uniquely determined. Similarly if n2 or 773 be given,

the other two are uniquely determined. Hence [77J, [7r2], [773]

are three homographic axial pencils of planes, of which the twisted

cubic is the product.

Conversely any three homographic axial pencils |>2], [773],

whose axes are a, b
,
c, determine in general a twisted cubic as their

product. For they determine on any plane A three homographic

flat pencils [p{\, [p2], [^3 ]
having for vertices the points A, B, C

in which a, b, c meet A. [pL], [p3 ]
have as their product a conic s

x

passing through A and C
; [p2], \p%\ have as their product a conic s2

passing through B and C . If P is a point of intersection of and s2 ,

other than C, P lies on three mutually corresponding rays of [pj,

[p]2 , [p3 ] and therefore on three mutually corresponding planes of

f^iL f
77^]* iy3]. It is therefore a point of the product-locus. Since

s
x , s2 have three intersections other than C , there are three such

points P.

C is not, in general, a relevant point, unless AG, BC happen

to correspond to the same line p3 through C, in which case sx and s2

touch along this line. But s2 can then have only two other

intersections so that, in every case, there can be only three points of

A lying on the product-locus, which is accordingly a twisted cubic.

If a, c intersect and [77J, [773] have a self-corresponding plane /?,

their product degenerates
(
see Art. 240

)
into f3 and another plane 8 .

If p2 is the plane of [772] corresponding to
/
3

,
every point of /J/?2

is a point common to three corresponding planes of [77^, [772],

[773]. Further, the product of [77^ [772 ]
is a quadric ift which meets

8 in a conic k, every point of which lies on the product-locus of

the three axial pencils. The twisted cubic then degenerates into the

straight line fif}2 and the conic k, which meets f3/32 at the point ac.

If, further, a and b intersect and [77J and [n2] have a self-corre-

sponding plane y, the product [77^2] breaks up into y and another

plane €. If y3 is the plane of [773] corresponding to y, then the three

straight lines /?/J2, yy$> form the locus
; j

8e, yS are not relevant,

unless
j
3c lies in /J2 or yS lies in y3 ,

in which case they coincide with
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the lines previously found. The twisted cubic then degenerates

into three straight lines.

A non-degenerate twisted eubic cannot meet a straight line at

more than two points. For if it meet a straight line a at points

A
,
B

, 0, take a point D of the cubic outside the line. Then the

cubic would meet the plane aD at four points A, B, 6, D which is

impossible.

It is clear that every twisted cubic lies on a quadric, for the

twisted cubic just considered lies on the product of [7^] [7r2], which

is a quadric of which a, b are generators. Similarly it lies in the

product of [7^] [77-3], of which a, c are generators.

Reciprocating the above properties, we see that the plane

through a set of corresponding points of three homographic

ranges which do not all lie in one plane touches a developable of

the third class, which may in special cases degenerate into a straight

line and a cone of the second order, or into three straight lines.

Examples

1. Show that a twisted cubic is entirely determined by any six points

on it.

[For if A, B, C

,

P, Q, R be the six points, the homographic relation between

the axial pencils passing through BC, CA, AB respectively is entirely deter-

mined by the triads containing P, Q, R.]

2. Prove that any four given points of a twisted cubic determine with

any variable chord of the cubic an axial pencil of constant cross-ratio.

3. IfA y B, C, P, Q , R be six points on a twisted cubic, show that the tangent

at A to the cubic lies in the planes through AB, AG which correspond to the

plane ABC of the axial pencil through BC in the correspondence between
homographic axial pencils determined by the triads of planes joining BC, CA,
AB to the points P, Q, R.

4. IfA is a point on a twisted cubic, a the tangent at A, P, Q, R, S four other

points of the cubic, prove that the osculating plane to the cubic at A is

the tangent plane along a to the cone of the second order determined by the

five generators ^4P, AQ , AR, AS and a.

5. Prove that the chords of a twisted cubic through a given point 0 of the

curve lie on a cone of the second order.

6. Prove that a twisted cubic lying in a quadric meets the generators of one

set in two points, and the generators of the other set in one point only.

[Consider the intersections of the cubic by a tangent plane to the quadric :

two must lie on one generator and one on the other.]

7. Prove that two given points of a twisted cubic lying in a quadric deter-

mine, with the generators of each system, homographic axial pencils.

8. Prove that a regulus and an axial pencil homographic with the regulus

generate a twisted cubic.

266. Intersections of quadrics. If fa, fa be two quadrics,

of which q is the intersection, then any plane tt meets fa, ifi2 in two
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conics $!, 82 ,
and q in the intersections of si9 s2 . Since the latter are

four in number, every plane meets q in four points so that q is, in

general, a twisted quartie.

If 0X , 02 have one generator x in common, this generator is

part of the locus q. The remainder of q meets any plane in three

points and so must be a twisted cubic. This can also be seen

otherwise, for if xlf x2 be two other generators of 0X , 02 respectively,

belonging to the same system as x in each case, 0X is obtained as

the product of homographic axial pencils [7r
x ], [tt] through X\, x

respectively, and 02 as the product of homographic pencils [tt], [tt2]

through x
,
x2 respectively. The points common to 0 X , 02 are

therefore the intersections of corresponding planes |V), f^j], [ir2],

that is they lie on a twisted cubic of which x
,

a?
x ,
x2 are chords.

If 0D 02 have two generators x
}
x' of the same system in common,

the planes 7rx ,
tt2 °f the last paragraph may be taken to pass through

x' ;
7T, ttj, 772 will not in general intersect outside x\ unless 7r

x ,
tt2

coincide. This will happen when 7rx ,
7t2 coincide with either of the

self-corresponding planes a, /? of the cobasal axial pencils [7r
x ], [7r2].

If <7,
t are the planes of 77 corresponding to a, £ respectively, then

every point of era or r/? is on three corresponding planes : these two

lines, together with x
9

x’
,
give the whole intersection. Also era,

<7/? meet both x and x
f

and so are generators y9
y' of the other

system. The intersection of 0X , 02 then consists of a quadrilateral

consisting of two generators of each system.

If 0l9 02 have part of their intersection in a plane, then this part

must be a conic s
,
which may degenerate into a pair of generators

x
, y of opposite systems, and this is part of the locus q. Since a conic

meets any plane at two points, the remainder of the locus q is a

curve of the second degree, that is, another conic k
9
or two lines,

which cannot be generators of the same system ;
the twisted quartie

then breaks up into two conics which may, or may not, degenerate

into line-pairs.

Note that, since the conic k is a plane curve, if two quadrics

have one common plane section, they have a second common plane

section.

When the intersection consists of a quadrilateral formed by two

generators x,
x' of one system and two generators y, y' of the other,

these lines may be associated in coplanar pairs either as x, y ;

x\ yf or as x
, y*

;
x', y 9

so that there are now four common plane

sections.

In the more general case, if a, ft are the planes of the sections 8, k,
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then 8, k must intersect on oc/?. If then C9 D are the points where

a/J meets both quadrics, the tangents to 8, k at C are tangent lines

to both quadrics and the plane through them is a common tangent

plane at C to both quadrics. Similarly the quadrics have a common
tangent plane at D.

Conversely, if two quadrics 0j, 02 touch at two points C, D
and P is any other point on their intersection, not lying in CD

,
the

plane PCD meets the quadrics in two conics ki9 k29 both of which

pass through C
9
D and P. If now the common tangent planes at

G and D do not contain CD
,
ki9 k2 touch at C9 D and have the point

P common. Hence they coincide entirely, so that the intersection

of 0 X , 02 contains one conic, and therefore two conics.

If, however, the common tangent plane at C contains CD
,
then

CD is a tangent line to both quadrics, and, since it passes through

another pointD common to i/j
} , 02 ,

it is a common generator of 0i , 02 .

The conics k\
9
k2 then degenerate into line-pairs, CD being a com-

ponent of each pair, the other components being the second

generators in the plane PCD
;

these intersect at P. In this case

the common tangent plane at D also contains CD. But ki9 k2

do not coincide as a whole and the previous conclusion ceases to

hold.

If the two quadrics touch at three points A, B and C,
and none of

BC
9
CA, AB is a generator, the plane ABC cuts them in conics

which touch at each of A, B C and therefore coincide. The meet

of the tangent planes at A
9
B

,
C is then the pole V of the plane

ABC with regard to both quadrics, and the cone formed by joining

V to the points of the conic in which the plane ABC meets both

quadrics is the tangent cone from V to both quadrics. The latter

therefore touch along the whole of the common conic.

By Art. 251 three quadrics 0X , 02 , 03 will intersect in general

in eight points. If the quadrics 02 , 03 have a common generator x
9

the remainder of their intersection is a twisted cubic t. Since x

meets 0 X at two points, then six of the eight intersections of 0l5

02 , 03 belong to t. But every twisted cubic can be so obtained.

Hence every twisted cubic meets a quadric in six points.

If 0!, 03 have a common generator x1
and 02 , 03 have a common

generator x2 of the same system as xl9 the intersection of 0X , 03

consists of Xj and a twisted cubic lying in 03 ,
and the inter-

section of 02 , 03 consists of x2 and a twisted cubic t2 lying in 03 .

The eight points of intersection of the three quadrics then consist of :

the two intersections of x
x
with 02 ,

the two intersections of x2



PROJECTIVE METHODS IN THREE DIMENSIONS 343

with ipi, and four other points, which are the intersections of

and t2 . Thus, two twisted eubics lying on the same quadrie and

having the same system of generators as chords intersect, in

general, in four points.

Example

Show that if a twisted cubic and a quadric have seven points common
they are altogether incident.

267. Homographic spaces. In precisely the same way as in a

plane, so in space of three dimensions we can have a one-one algebraic

correspondence between points, such that planes correspond to

planes and therefore lines to lines. Such a relation may be described

as a space homography. Two space fields O, O' thus connected

are homographic, and, as in Art. 161, it may be shown that the

relations between the point-co-ordinates are expressed by three

equations of the form

*-P\IP«lf-PJP**-P*IP4 >

where P
r
=a

r
x + b

ry +cr
z + dr ,

(r = 1 , 2, 3, 4).

Similarly the equations connecting the plane-co-ordinates are

l'=Qi/Q4,m'=Q2IQ4,n'~Q3/Q4 ,

where Qr
=A

r
l + Br

m + C
r
n +Dr ,

(r = l, 2, 3, 4), and A
r ,
B

r ,
etc.

are the co-factors of a
r)

b
r ,

etc. in the determinant of the coefficients

a, b , c, d. These relations may also be expressed in the form

l = (a
}
V + a2m' +a3n' + + ^2m ' +dsn' +d4 ),

with two similar equations, and

x = (A x
x' +A 2

y' +A 3z' +A 4)/(D1
z' +D2y' +Dsz' +Z>4),

with two similar equations.

In such a space homography corresponding fields in corresponding

-planes, as also all corresponding forms such as ranges, flat or axial

pencils, ranges and pencils of the second order, reguli, etc. are

homographic.

The planes P4 = 0 and Dxx' +D2
y' +D3z' +Z)4 =0 correspond to

the plane at infinity and are termed the vanishing planes. A space

homography is entirely determined by five points corresponding to

five given points, no four of each five lying in a plane, and therefore

no three lying in a straight line.

To prove this, let A x ,
Bx , Cx ,

Dx ,
Ex

correspond to A2 ,
B2 >

C2t

Z>2 ,
E2 > in the homographic spaces 0 1? <P2 >

no four points of either

set being coplanar. Let P\ be any point of Oj not lying in the

plane and let P2 be the corresponding point of <b2 .
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Then, in the corresponding axial pencils of axes I^Cj, B2C2

B
xCx(A x

DxEx
P

x
)~kB2C2(A2D2E2P2 )

which determines uniquely the plane B2C2P2 when BXCXPX is

known, since no two of the three planes B
XCX
A

X ,
B

xCxDXi BXCX
E

X

and no two of the three planes B2C2A 2 ,
B2C2D2 ,

B2C2E2 are

coincident.

In like manner C2A2P2 ,
A 2B2P2 are determined. If P

x
is not in

A1B1C1, then P2 is not in A 2B2C2 and the three planes above must

be distinct, and cannot have a line in common since they pass through

the sides of a plane triangle.

This fixes uniquely the corresponding points of all points outside

the plane AiBxGi .

That this construction leads to a homography is easily verified.

For, if P
x

describe a line xX) then the axial pencils A XBX
[P

X ],

AiCi\Pi\ are homographic and have the plane AiBxCi self-corre-

sponding. Therefore, by the construction for P2 ,
the axial pencils

A 2B2[P2], A2C2[P2] are homographic and have the plane A 2B2C2

self-corresponding. Hence A 2B2P2 ,
A2C2P2 meet on a fixed plane

A. Similarly A 2C2P2 ,
B2C2P2 meet on a fixed plane /z. Thus P2

describes the straight line A/z, which is thus x2 . Straight lines

therefore correspond to straight lines, and this necessitates that

planes correspond to planes, for if two lines P
XQX ,

R
X
S

X
intersect,

the corresponding lines P2Q2 ,
also intersect, so that four

coplanar points correspond to four coplanar points. The space

fields Ox, 02 thus obtained are therefore homographic.

The above has left the points in the planes AiBxCi, A 2B2C2

unrelated. It is clear that these two planes must correspond in the

homography, since no point outside A 2B2C2 can correspond to a

point on A XBXCX . We can complete the correspondence by making

intersections of corresponding lines with these planes correspond.

If D
l
E

l
meet the plane A

X
B

X
C

X
at F

x
and D2E2 meet the plane

A 2B2C2 at F2i then A x ,
B

x , Cx ,
F

x
and A 2 ,

B2 ,
C2 ,

F2 form corre-

sponding plane tetrads which define uniquely the correspondence

between the fields in those planes (Art. 162 ).

Thus the two original sets of five points determine the homography

completely.

268. Self-corresponding points of a space homography. It

is obvious from the last Article that, in general, two homographic

spaces <Px, 0>2 cannot have more than four non-coplanar self-

corresponding points, since five self-corresponding points, no four of
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which are coplanar, would determine the homography as an identity*

We will now show that there are, in general, four such points.

Let a x be any straight line in <&
x , not passing through a self-

corresponding point, and let a2 be its corresponding line in <t>2 .

If a2 ==&i in corresponds to b2 in <I>2 , and b2~cx in^ corresponds

to c2 in 02 ,
then a2 ==b ly b2~c x

an(^ c2 can contain no self-corre-

sponding point. The lines a l9 a2 might, as a special case, intersect,

in which case b Xf b2 and also c
X) c2 will intersect, but these inter-

sections must all be different, otherwise they must all coincide at a

self-corresponding point, a case which has been excluded.

Now let ax
be any plane through alf a2 =j81 the corresponding

plane through a2~blf j32 =-y i
the corresponding plane through

b2~c x , y2 the corresponding plane through c2 .

Then oqo^, /3x f32 , yiy2 are generators of three quadrics t/j2>

(which may as a special case be cones with distinct vertices).

ipi, i/s2 have a2=~b x
as a common generator ;

ip2 ,
have b2~c x

as a common generator
;

if */jx ,
i/j2 ,

</r
3 are proper quadrics, bx ,

b2

are generators of
\fj2 of the same system.

We have therefore the case considered in the last paragraph of

Art. 266 (which applies equally to proper quadrics and to cones,

provided the cones have not common vertices). Hence i[f
X ,

i/r2 ,

have, outside b
x ,

b2 ,
four intersections A, B, C, D, which are not in

general coplanar since they lie on a twisted cubic.

Every intersection A, B, C, D is common to six planes ocly oc2 ,

j8j, j82 , yi,y2 >
that is, corresponding points 0L

Xp xyXi a2j82y2 coincide

at such a point. A
,
B

, 0, D are therefore self-corresponding points

of the homography.

Clearly and b2 cannot contain any self-corresponding points.

Conversely, every self-corresponding point of the homography must

lie in ip
x ,

i
fj2 and i/jz . For if P be such a point, the planes a

x
P

,

a2P correspond and so are planes ax , a2 . Similarly b
x
P corresponds

to b2P ,
so that if 6iP=j81 ,

b2P = fi2 \
note that is then a2 .

Again c
x
P = j82 =yi and corresponds to c2P =y2 . P therefore lies on

each of ^1}
tp2) and so must be one of their points of intersection.

Two homographic space fields have therefore, in general, four

non-coplanar self-corresponding points and four only. The faces

of the tetrahedron formed by these four points are the self-corre-

sponding planes and its edges are the self-corresponding lines.

The homography is determined if, in addition to the four self-

corresponding points A, B, C, D, we are given a pair of corre-

sponding points E
x , jy2 ,

which do not lie on a face of the self-
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corresponding tetrahedron. But, if they do lie on such a face,

say ABC, the space homography is no longer determined, but only

the homography between the plane fields in ABC . Another pair

Fh F2 are then required, but their positions can no longer be

arbitrarily selected. For if DFi meet the plane ABC at G\, G2

is a known point, and F2 must be taken on DG2 .

If, in such a case, the points 2?j, E2 are made to coincide at a

point E
,
in the plane ABC but not on any side of the triangle ABC

,

the homography in the plane ABC=n has four self-corresponding

points, no three being in line. In this case every point of 7r is

self-corresponding
;

every pair of corresponding lines meet on n

and every pair of corresponding planes meet in a line of 77. Further,

every line through D is self-corresponding, so that if Pj, P2 are

any two corresponding points DPi, DP2 coincide, and the joins of

corresponding points pass through a fixed point D.

We have then an analogue of plane perspective, and it is reasonable

to give it the name of space perspective, since any two corre-

sponding plane fields in it are in space perspective from the vertex D
according to the definition of Art. 1 . D is the pole of the space

perspective and n is the plane Of perspective.

To define the space perspective completely we require another pair

of points Fh F2 which may be taken anywhere on a line through D.

The vanishing planes then contain the line at infinity in 77 and so are

parallel to 77, and constructions for corresponding points, planes

and lines can be worked out by a simple generalisation of those of

Art. 16.

If, however, we take the self-corresponding point E on an edge

BC of the self-corresponding tetrahedron (but not at B or C

)

then every point of this edge is self-corresponding and every plane

through the opposite edge AD is self-corresponding. It is then easily

seen that the homographic fields in each of the self-corresponding

planes ABC, DBC are fields in plane perspective. We may refer

to this type of homography as uniaxal. To define it, we require

another pair of corresponding points FY ,
F2 ,

which must be taken

in a plane through AD, but are otherwise arbitrary, save that they

must not lie on AD itself or in the planes ABC, DBC . If two such

points Fi, F2 coincide at F, then every point of the plane A through

AD, in which they lie, is self-corresponding. Every plane of space

meets A in a self-corresponding line and BC in a self-corresponding

point, and so is self-corresponding and the homography reduces

to an identity.
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If the plane ADF meet BC at X and Fu F2 coincide at F on
one ofAX or DX, say on AX, then there are three self-corresponding

points A, F, X on AX and this line is wholly self-corresponding.

Two lines AX, BC in the plane ABC are then wholly self-corre-

sponding, so that the plane ABC is wholly self-corresponding. We
then fall back on the case of space perspective.

But if F
1 and F2 coincide at F on AD, we have AD wholly

self-corresponding and we have the case of two non-intersecting

lines or axes of homography, every point of which, and every
plane through which, is self-corresponding. We may refer to this

type of homography as biaxal. To define it we require another pair

of corresponding points G X,G2 ,
which must now be taken on a line

meeting both axes at X, Y.

No further degeneration is now possible, for if Gx and G2 were
now to coincide at G, the line X Y would become wholly self-corre-

sponding. The planes determined by XY, AD and by XY, BC
would then be wholly self-corresponding and every plane (and

therefore every point) of space would be self-corresponding.

269. Involutory space homographies. If in a space homo”
graphy two distinct points correspond doubly, their join is a self-

corresponding line, upon which the homography determines an
involution whose double points are the only points of this line self-

corresponding in the homography. If there be two such involutory

self-corresponding lines a, b in the homography, which do not

intersect, the double points of the involutions on a, b form a self-

corresponding tetrahedron. If a, b intersect, then the point and
plane ab are a self-corresponding point and self-corresponding plane,

and Art. 168 shows that the homography determines, in this plane, a

harmonic plane perspective. In either case, no conclusion can be

drawn as to whether any other pair of distinct points, not lying on
a, b or in the plane ab when a, b intersect, correspond doubly.

If, however, there be a third involutory self-corresponding line c
,

we have to consider the following cases :

I. a, b, c are all skew to one another. Let Pi, P2 be two corre-

sponding points on a, and let px , p2 be the lines through P
x , P2

which meet b,c; px , p2 are thus uniquely determined when P
x ,
P2

are known, and they are corresponding lines, since b, c are self-

corresponding. The cobasal reguli [p Y ], [p2] are homographic,

and, in fact, form an involution, having double lines x, y, which are

self-corresponding in the homography. On each of x, y are three

distinct self-corresponding points, namely those in which x, or y.
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meets a, b, c. Hence every point on x or y is self-corresponding and

the homography is a biaxal homography, with x, y as axes.

II. a intersects b, but c does not lie in the plane ab. If 0 is

the point ab, a the plane ab, then 0 is self-corresponding. Let A, B
be the other self-corresponding points on a, b and let AB =x. The

homography determines in a a harmonic plane perspective in which

0 is the pole and x the axis of perspective. Now the point ca=2)

must be self-corresponding and so is either at 0 or lies on x . If D
is at 0, a, b, and c are concurrent but not coplanar ; we reserve this

case for further consideration. If D lies on x, then, since the

correspondence in a is a harmonic plane perspective, OD=d is an

involutory self-corresponding line in the homography, which

therefore determines, in the plane cd=j3, another harmonic plane

perspective, of which D is the pole, and a line y in /? is the axis, where

y passes through 0 and through the other self-corresponding

point G on c. This point C is not in a, hence x
, y are skew lines.

Clearly every point of x, y is self-corresponding in the homography,

which is thus again biaxal.

III. a, b, c are concurrent at 0, but not coplanar. 0 is self-

corresponding
;

let A, B, C be the other self-corresponding points

on A, B, C. As before, the homography determines, in each of

the three faces of the three-edge abc
,
a harmonic plane perspective.

The three axes of perspective are the lines BC, CA, AB, every

point of which is self-corresponding, whence it follows that every

point of the plane ABC is self-corresponding and the homography

reduces-to a space perspective.

If now in either a biaxal homography, or a space perspective,

a pair of distinct points Pj, P2 correspond doubly, the homography

will be involutory. For it is always possible to take arbitrarily

two points A, B on one axis x of the biaxal homography, and two

points C, D on the other axis y, such that of the five points A, B

,

C, D, Pi, no four are coplanar. And since PjP2 meets both AB
and CD, then C cannot lie in the plane ABP2 without also

lying in the plane ABPX ,
which we have just excluded ;

similarly

for the other cases. Thus of A, B
,
C, D, P2 ,

no four are coplanar.

In like manner it is possible to take three arbitrary points A, B, C
in the plane of perspective tt of the space perspective in such a

way that, D being the pole of perspective, no four of A, B, C
,
D, Px

are coplanar, and therefore, using the fact that PiP2 passes through

D, no four of A, B, C, D, P2 are coplanar.

The homography is then determined by the transformation of
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A ,
B, C\ D, Pi into A, B, C, D, P2 * But, since P2 correspond

doubly, if P2 =<?i> then .P
x = Q2 - The same homography is there-

fore determined by the correspondence which transforms A, jB,

C, 2), Qj into A
,
P, O, Z), Q2 ,

that is, -4, B, C, 2>, P2 into .4, B, C, 23,

Pj. It is therefore identical with its reverse, that is, every pair of

distinct corresponding points correspond doubly and the homography

is involutory.

Since every pair of mates are harmonically separated by the double

point of an involution, any two corresponding points in such an

involutory homography are harmonically separated (i) by the axes

when the homography is biaxal, (ii) by the pole and plane of per-

spective when the homography is a space perspective.

An involutory biaxal homography is usually referred to as a

skew involution and an involutory space perspective as a

harmonic space perspective.

These two are the only possible types of involutory space

homography.

270. Any quadric can be transformed homographically into

any Other quadric. Let \jjx
be a quadric, Ah Bu Cx

any three

points on it, a lf a x
the generators through A lf b

x ,
bx the generators

through B
x

. Let a
xb x

be Dl) a
x
b

x
be E

x
. These data define

the quadric tp
x

entirely. For, if through C\ we draw a line cx

meeting the two generators ax ,
bx

(unaccented generators belonging

to the same system), then cx has three points of the quadric on it,

and is then a generator of the accented system. We have thus

three generators of the latter system and the quadric is determined.

On another quadric \(j2 take in like manner three arbitrary points

A 2 ,
B2 , C2 and the generators a2 ,

a2 through A 2 ;
b2 ,

b2 through

B2 ,
those of opposite systems meeting at a2b2 =D2 and a2 b2 ^E2 .

These data define </f
2 entirely.

Consider now the homography in which A Xf B x , Ci9 DX} Ex

correspond to 4 2 ,
B2i C2 ,

D2 E2 . It transforms \ftx
into a quadric

ifj2
'—since a homographic transformation leaves order, class and

degree unaltered—and ifj2 passes through A2 ,
B2> C2 and has the line

A 2D2 =a2 a generator and also B2D2 = b2 ,
A 2E2 = a2 ,

B2E2 =*b2 are

generators. But these data determine i/j2 ,
which therefore coincides

with \fs2 ,
and corresponds homographically to tp

x .

It follows that any property which is preserved by homography,

such as the non-metrical properties of incidence, tangency and

cross-ratio, holds for all quadrics if it can be proved for any (non-

degenerate) quadric. It should, however, be borne in mind that
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degeneracy is also preserved by homography, so that we cannot

argue in this way from properties of a degenerate quadric to those

of the general quadric.

Further, any conic s
x
may bo transformed homographically into

any other conic s2 ,
with any three given points A Xi Bx ,

Cx of Sj

corresponding to any three given points A 2 ,
B2i C2 of s2 . We have

already seen how to do this by a plane homography (Art. 166)

between fields in different planes. It can, however, also be done

by a single space homography as follows. Let the tangents to sx

at A Xf Bx meet at Tx , those to s2 at A 2i B2 meet at T2 . On any

lines through Tx , T2 , not in the planes of sXf s2 respectively, take two

pairs of points D
x ,
E

x ;
Z)2 ,

E2 . Then the homography in which

A
x ,
B

x ,
C

x ,
D

x ,
E

x
correspond to A 2f B2 ,

C2i D2) E2 transforms T x

into T2 and s
x
into a conic touching T2A 2 at A 2 ,

T2B2 at B2 and

passing through C2i that is, into s2 .

Any conic may therefore be transformed homographically into

the circle at infinity, and any quadric of which that conic is a

plane section then becomes a sphere. The non-metrical properties

of the general quadric may therefore be deduced from those of the

sphere in the same way as those of the general conic are deduced

from those of the circle.

271. Space correlation. In the same way as we construct a

space homography we can construct a space correlation in which

points correspond to planes and planes to points, straight lines

as joins of two points corresponding to straight lines as meets of two

planes' The equations of transformation are obtained from those

of Art. 267 by interchanging x', y\ z' with l\ m', n\

Note that, in any correlation, a surface-locus of any order

corresponds to a surface-envelope of the same class, a curve of

any degree to a developable of the same class, an axial pencil to

a homographic range, a flat pencil to a homographic flat pencil, a

regulus to a homographic regulus, a cone of the second order to a

conic, and a quadric to a quadric.

As in Art. 173 we can consider incident points and planes in

such a correlation. If a point P
x =E2 lies on its corresponding

plane ir2 ,
then if px

is the plane corresponding to R2i since R2 is a

point of 7r2 , then px passes through Pl9 so that a point is incident,

in whichever field we take it, and through every incident point

pass its two corresponding planes. Similarly in every incident

plane lie its two corresponding points.

In general, corresponding lines do not intersect; if, however,
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two corresponding lines xx , x2 intersect, the point and plane which

they determine are an incident point and plane. For, let Px =P2

be the intersection of two such lines. Since Px lies on xlf its corre-

sponding plane rr2 passes through x2 and so must contain PXi since

x2 contains it. Similarly p x
which corresponds to R2 must pass

through x
x
and contains R2 . These planes, however, are not

necessarily identical with the plane x
x
x2 . Similarly if ax =/?2

is the plane x
x
x2 , then since <x

x
passes through xlf its corresponding

point A2 lies on x2i and therefore in oc
x ,
and the point B

x
correspond-

ing to /?2 lies on xx and therefore in fi2 . These points A 2 ,
B

x are

not necessarily identical with the point x
x
x2 .

If now x is any line in space, Px any point of it, 7r2 its corre-

sponding plane meeting x at P2 ,
the ranges [P

x ] [P2] are homo-

graphic. Being cobasal, they have two self-corresponding points

U, V. If P
x
coincides with either U or V, it coincides with P2

at that point and therefore lies in 7t2 . Every straight line has

accordingly two incident points on it
;
hence the locus of incident

points is a quadric ip
x .

Similarly, if ttx be now any plane through x
,
P2 its corresponding

point, the axial pencils x[P2] and [7^] are homographic. Their

self-corresponding planes a, are such that, when treated as planes

of the field <t>
x ,
they contain their corresponding points in 02 . Thus

through any line x two incident planes can be drawn, hence the

envelope of incident planes is a quadric i/j2 .

If P be a point common to </q, i/j2 ,
let gXi h x

be the two generators

of \fix through P. Since every point of gx
lies on iftx , every plane

through g2 is tangent to ip2 ,
so that g2 is a generator of ip2 >

similarly

h2 is a generator of tjj2 . Now P=Eg xh x
corresponds to the plane g2h2 ,

and since P is an incident point it lies in this plane. But P is also a

point of i/j2 and so lies in at least one of g2 ,
A2 . If P lies on g2)

then if Q x
be any other point of gx , Qx is an incident point and lies

in the corresponding plane k2 which passes through g2 ;
and these

planes k2 are all different. But all the points Qx
necessarily lie in

the determinate plane gxg2 ;
this requires that the points Qx must

lie on <72 , that is gx and g2 coincide. Hence the intersection of

iffX , ifj2 must consist entirely of common generators, so that, in

general, it is a skew quadrilateral (Art. 266) and </q, ip2 touch at the

four vertices of this quadrilateral.

If, however, tjs
x be a cone, then

\fj2 is a disc quadric, the envelope

of the tangent planes to a conic s2 . In this case the generator gx

of </q through P must correspond to a tangent g2 to s2 . Here again

24
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the points of g x
lie on their corresponding planes through g2 ,

which are all different, and as before gx coincides with g2 . The

vertex of fa corresponds to the plane of fa and lies in it. This plane

meets the cone fa in two generators gx ,
which touch s2 at two

points. This case may be deduced from the more general one by

making the four common generators coincide in pairs, members of a

pair belonging to opposite systems.

As in Art. 173 we may speak of fa, fa as the base quadrics of the

space correlation.

If the base quadrics coincide in a single quadric ip, then, by the

above reasoning, every generator of one system on \p is self-corre-

sponding in the space correlation ;
and, in general, the generators

of the other system correspond homographically with two self-

corresponding members.

If, however, every generator of both systems on \p be self-corre-

sponding, then any tangent plane to \p corresponds to its point of

contact, and this is still the case if the two fields be interchanged.

Hence if a1? px
are the tangent planes to ip through any line px ,

A 2j B2 their points of contact with ip, the line A 2B2 corresponds

doubly to p x . Thus polar lines with respect to ip correspond

doubly in the correlation
;
and by considering intersecting lines

it is seen that any point in either field corresponds doubly to

its polar plane with respect to ip in the other. We have now a

transformation by reciprocal polars with respect to the base

quadrip ip.

As a particular case the quadric ip may be a sphere of centre 0
and radius of reciprocation a, which may be arbitrary. We then

have point-reciprocation in three dimensions, a point Px corre-

sponding to a plane tt2 perpendicular to OPx and meeting 0P
X
at P2

where OPx .OP2 ^a2
.

In such point-reciprocation the dihedral angle between two planes

is equal to the angle subtended at 0 by their corresponding points
;

also two corresponding lines are perpendicular, and the angle

between any two lines al9 b x
is equal to the dihedral angle between

the planes Oa2 ,
Ob2 .

272. Inversion with regard to a sphere. Precisely as in

Chapter XI we can define inversion with respect to a sphere centre

0 and radius a by taking the points Pl9 P2 of the last part of

Art. 271 to correspond.

Such a transformation (as in the plane) is not a homography.

The following properties of inversion with regard to a sphere
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are easily established, following the lines of Chapter XI, and are

set down below without proof, for reference.

Every sphere not passing through 0 inverts into a sphere not

passing through 0, and every sphere passing through 0 inverts

into a plane
;

also any circle not passing through 0 inverts into a

circle not passing through 0, a circle in a plane through 0 inverts

into a coplanar circle, and every circle passing through 0 into a

coplanar straight line.

Every sphere through two inverse points is orthogonal to the

sphere of inversion.

A sphere orthogonal to the sphere of inversion inverts into itself.

A set of spheres which intersect on a fixed plane (the common
radical plane) have on their line of centres two limiting points

which are point-spheres of the set, and invert with respect to either

of these limiting points into concentric spheres.

Two corresponding surfaces or curves through inverse points

Pi, P2 are equally inclined to the line OP
x
P2 ,

the normals to the

two surfaces (or the tangents to the two curves) being coplanar

with OP
1
P2 ,

but not parallel to each other. Hence any small

elementary solid inverts into an oppositely similar solid (i.e. with

right and left interchanged), and the transformation is conformal.

If two inverse fields are simultaneously inverted with respect to

any centre, they invert into inverse fields, their spheres of inversion

inverting into one another.

273. The twelve-face eight-point. There exists, in three

dimensions, an analogue to the harmonic property of the complete

quadrangle and complete quadrilateral in a plane.

Let three pairs of planes a1? a2 ; ; yl9 y2 be described to

pass through the sides BC, CA ,
AB respectively of a triangle

ABC lying in a plane 8. These three pairs of planes define a

harmonic space perspective, of which the plane of perspective is 8

and the pole is the point D of concurrence of the planes through

BC
, CA, AB harmonically conjugate to 8 with respect to a1? a2 ;

Pi, P2 5 Yi> 72 respectively. We shall denote the faces BCD ,
CAD,

ABD of the tetrahedron ABCD by a, p, y.

In what follows p, q ,
r will denote any set of suffixes each of

which is either 1,2; p
f

,
q', r* will be the complementary suffixes

to p, q, r, so that if p - 1,
p' =2 and conversely.

The points <xpPqyr are 8 in number and form the vertices of a

figure which may be called an eight-point. Since, in a space

harmonic perspective, every pair of corresponding elements corre-
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spond doubly, lines such as ftyf , fJ
t

q

,yr
, correspond, and the plane

containing them passes through D . Denote the plane (ftyj, fty2)

by h> (Pi72 > ftyi) by ft- Tlle planes ft, ft, y1? y2 belong to the

star vertex A and form in this star a complete four-face, of which

A1? A2 and ABC are the diagonal planes, and A1? A2 meet in AD.
By the harmonic property of the complete four-face, and A2
are harmonically conjugate with respect to the planes DAC, DAB

,

i.e. j8 and y. Similarly the planes /*i=(yiai, y2a2), /x2 = (yia2 ,

ygoci) pass through BD and are harmonically conjugate with respect

to y, a. Again the planes ^—(o^ft, a2ft), v2 = (oqft, a2ft) pass

through CD and are harmonically conjugate with respect to a, ft

Moreover, every vertex 0Lpj3qyr
lies on a straight line ftyr

and

therefore on a plane An . There are four vertices in A1? namely

ociftyx, ajfty2 ,
a2ftyx ,

a2fty2 ,
and four vertices in A2 ,

namely

aifry2 > *i02yi> «2fty2 ,

A plane which contains four vertices of the eight-point will be

termed a face of the eight-point, and two faces which contain

between them all the eight vertices will be termed opposite faces.

It will be clear from what has gone before that A
x ,

A2 ,
and by

symmetry also /i^, /x2 and p1? v% are pairs of opposite faces. It is

also immediately clear, from the original mode of construction of

the vertices of the eight-point, that the pairs a1? a2 ; ft, ft ; yl9 y2

are likewise pairs of opposite faces. There are thus 12 faces, and

for this reason we shall refer to the figure as a twelve-face eight-

point. That there can be no more than 12 such faces can be seen

as follows. There are 56 planes obtained by taking the 8 vertices

3 at a time
;

of these each of the 12 faces contributes four coincident

ones, making a total of 48. There remain 8 planes containing only 3

vertices
;
such vertices are readily recognised to be of type apfiqyri

ap<ftyr, oyftyr/, and there are as many of them as there are

vertices a
PPQyr ,

for they cannot repeat themselves, as if we take,

for example, p
f

,
q' instead of q, the rule gives a^ftyr ,

apf3(Iyr,

apPqVr'y where the third vertex is new and a distinct plane is

obtained. Accordingly all the 56 planes are accounted for, and

there can be no additional faces.

It now appears that the properties of the eight-point are entirely

symmetrical with respect to the tetrahedron ABCD . This tetra-

hedron will be referred to as the diagonal tetrahedron of the

eight-point. Its vertices, faces and edges will be termed the

principal diagonal points, planes and lines of the eight-point.

Accordingly we may define the eight-point by three pairs of
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opposite faces passing through three coplanar edges of the diagonal

tetrahedron, e.g. ax ,
oc2 ;

/xj
,
/x2 ;

vi9 v2 through BC, BD, CD. These

pairs will correspond in a harmonic space perspective of which A
is the pole and a the plane of perspective.

But since every vertex lies in one or other of a pair of opposite

faces, any three pairs of such faces will define the eight vertices.

Vertices of the type cnpfayr,
ap>fayr> will be called comple-

mentary vertices ; the same applies to vertices of the type a^
ff
vr,

ap'fW> and similarly in other cases. Lines joining comple-

mentary vertices will be called edges of the eight-point. An
edge joining vertices ocpfayr ,

OLp.fa
fyr ,

which are corresponding

points in the plane perspective of pole D, passes through D, and

there are clearly four such edges.

Similarly there are four edges through A (of the form aPpq
v
r ,

ap'/VV)* ^our through B and four through C
y
so that there are

altogether 16 edges of the eight-point.

If we now consider two pairs of planes (a 1? a2 )
(Aj, A2 )

which pass

through opposite edges BC, AD of the diagonal tetrahedron,

each of the four lines aLpXq
meets both BC and AD, and contains

two vertices ccpXqfa and oipXqfa>, (fa, fa) being any other pair of

opposite planes. These are not complementary vertices, and the

lines ocpXq will be termed diagonals of the eight-point. Every

diagonal meets two opposite edges of the diagonal tetrahedron
;
four

meet the same two such edges, so that there are 12 in all.

Moreover, since there are only 28 joins of 8 points two at a time,

the 16 edges and 12 diagonals exhaust the possible combinations.

Through any edge fayx
pass three faces fa, yx , A2 ,

no two of which

are opposite.

Through any diagonal pass only the two faces a
x , Ax .

. Through any vertex axfayx
pass the six faces ol

x , fa, yx , Xl9 fil9 v
x

no two of which are opposite, the four edges which join this vertex

to A, B, C, D and the three diagonals which are the lines through

this vertex meeting pairs of opposite principal diagonal lines.

In any face olx lie four edges cn
} fa, <x.

xfa, cn
xyx ,

<xxy2 . The edges

oiifii, a^, OLyVi, ax
v2 are identical with a^, *ifa, ccxfa

respectively. In the same face oq lie the two diagonals axA x and

0CiA2 .

274. The twelve-point eight-faee. Reciprocating the argu-

ments of the preceding Article, we can construct a figure with eight

faces and twelve vertices, through each one of which pass four faces.

A repetition of the proof would be tedious, although the student
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is advised to go through it carefully for himself, using the method
of translation explained in Art. 57 and adapted to the case of three

dimensions. The results will here be briefly indicated.

On three edges y8y, ya, a/? of a three-edge of vertex D pairs of

points A x , A 2 ;
B

x , B2 ; Cx ,
C2 are taken. From these eight planes

ApB(/
Cr are obtained, which form the eight faces. The triangles

A 1B1C\, A2B2C2 define a harmonic space perspective with D as

pole and a plane 8 as plane of perspective, meeting /Jy, ya, a/J at

A, B, C. The diagonal points (other than D) of the quadrangles,

such as BXB2CXC2 , give pairs of points L
x , L2 ;

M
x , M2 ;

N
x ,
N2

on BC, CA, AB, that is, on a8, p8, y8 respectively. We have twelve

vertices A x , A 2 ; Bx , B2 ; C x , C2 ; Lx , L2 ; M x , M2 ; Nx , N2

opposite in pairs, any three pairs determining the eight-face.

These are connected in groups of three by harmonic space per-

spectives having A, B, C, D and a, /?, y, 8 as poles and planes of

perspective, respectively.

Meets of complementary faces A
p
B

q
Cr, Ap

.B
q
.C

t
. give 16 edges.

Each edge lies in a principal diagonal plane, that is, a face of the

diagonal tetrahedron a/Jy8. In each principal diagonal plane lie

four edges, e.g. the edge given by A XB2CX , A 2BXC2 lies in 8 and
contains the points L2M X

N2 . Every edge has three vertices on it.

Joins of vertices such as A
X
L

X , A X
L2 , A 2L X , A2L2 , which lie on

opposite principal diagonal lines give the 12 diagonals.

Through every vertex pass 4 faces, 4 edges and 2 diagonals.

In every face lie 4 edges, 3 diagonals and 6 vertices, which are the

intersections of the face with the 6 principal diagonal lines.

Every principal diagonal plane contains 4 edges and 6 vertices,

forming a complete quadrilateral of which the three principal

diagonal lines in that plane form the diagonal triangle.

Through every edge and every diagonal pass only two faces.

275. Harmonic properties of the eight-point and eight-face.

If we consider a diagonal of the eight-point, say a^ (see Art. 273),

meeting two opposite principal diagonal lines BC, AD, the two
vertices on it are determined by a pair of opposite faces such as

Pi, p2 > passing through AC. But px , p2 are harmonically conjugate

with respect to the two principal diagonal planes CAB, CAD,
that is, 8, p passing through their intersection CA. These four

planes meet ajAj at the two vertices on it and at its intersections

with the lines BC, AD, which lie in 8, ft respectively. Thus

(1) every diagonal is harmonically divided by the principal

diagonal lines which it intersects.
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We have already seen that (2) every pair of opposite faces

are harmonically conjugate with respect to the principal

diagonal planes through their intersection.

Further, since every face of the eight-point contains one principal

diagonal line, the six faces through a vertex are the planes through

that vertex and the six edges of the diagonal tetrahedron. Hence

(3) they are the six faces of the complete four-edge formed

by the four edges of the eight-point through the given vertex,

and the three diagonals are the three diagonal lines of this

four-edge.

Consider now any edge fay, passing through the principal

diagonal point A. The vertices on it lie on opposite faces aj, a2,

which pass through BC and are harmonically conjugate with respect

to the planes BGA=8 and BCD= a. Thus the two vertices, in

which the planes a1( a2 of the axial pencil (aa
x
Sa2 )

meet fay,, are

harmonically conjugate with respect to the points where a, 8

meet fay,, that is (4) any edge is harmonically divided by

the principal diagonal point on it and the opposite principal

diagonal plane.

By reciprocation, or directly, we obtain the corresponding

harmonic properties of the twelve-point eight-face, as follows,

corresponding propositions being correspondingly numbered.

(1) The two faces through a diagonal are harmonically con-

jugate with respect to the two planes containing that diagonal

and the principal diagonal lines which intersect it.

(2) Every pair of opposite vertices are harmonically con-

jugate with respect to the principal diagonal points on their

join.

(3) The six vertices in a face are the six vertices of the

complete quadrilateral formed by the four edges in that face,

and the three diagonals in that face are the diagonals of this

quadrilateral.

(4) The two faces through an edge are harmonically divided

by the principal diagonal plane through that edge, and the plane

joining the edge to the opposite principal diagonal point.

276. Associated eight-point and eight-face. It follows from

property (3) of the twelve-point eight-face in the last Article that a

diagonal A,L, lying in a face A,B,C

,

is harmonically divided at

points P,, P2 by the diagonals B,M,, CiNi lying in that plane.

But Alfa also lies in the face A,B2C2 ,
and so is harmonically

divided by the diagonals B2M2 , C2N2 lying in that plane.
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Now the faces through BX
MX are A XBXCX9 A2Bx

C2f and the faces

through A XL X are A XBXCX , A X
B2C2 . Hence A XLX , BX

MX meet

on the intersection of the planes A2BXC2 ,
A xB2C2i that is, on the

diagonal C2N2 . Therefore the non-coplanar diagonals A XLX>

B
x
MXi C2N2 are concurrent at P

x ,
and similarly A XLX ,

B2M2 ,

C
X
NX are concurrent at P2 .

We see then that the diagonals of the eight-face are concurrent

in threes at points such as Pl9 P2 which are not vertices of the

eight-face. On each diagonal there are two such points, making
24 in all, but in this sum each point is counted three times over, so

that there are eight points of type PXf P2 .

We will now prove that these eight points form a twelve-face

eight-point.

The points P
x>
P2 on A

XL X
are the intersections of A XL X

with

C2N2 and CX
N

X . Similarly we have points P3 ,
P4 on ^42^i which

are the intersections of A 2L X
with C2NX anc^ ^1^2 - But on each

of the four diagonals C2N2 ,
CxNXi C2NXi CX

N2 there is a second

point of the same class. Let these be Qx , Q2) QSi Q4 .

Now Plt P2 ,
P3 ,

P4 lie in the plane A i
A 2Ll , which we may term X

x

and which passes through the principal diagonal line AD. The
points Nx ,

N2 lie in the principal diagonal line AB and therefore

in the principal diagonal plane ABD=y. Similarly Cx , C2 lie on

CD and therefore in the plane ACD = f}.
Let the plane ADQ

X

be A2 . Since C2N2 is harmonically divided by PXi QXi we have

AD{C2PX
N2QX} = -1 = {f3X 1yX2} : A2 is therefore the plane through

AD harmonically conjugate to X
x
with respect to jS, y. Proceeding

in like manner with the ranges {CXP2NXQ2) (C2P3N XQS )
(CXP4N2Q4 )

we find that Qx , Q2 , Q3 , Q4 all lie on A2 . The eight points P, Q
thus lie on two planes through AD, harmonically conjugate with

regard to the principal diagonal planes through AD.
By symmetry the same holds good of any other edge and it follows

that these eight points are vertices of a twelve-face eight-point,

having the same diagonals, and the same diagonal tetrahedron, as

the original twelve-point eight-face.

We shall say that an eight-point and eight-face related in this

manner are associated.

We might have arrived at the same result by proving that the

diagonals of the eight-point are coplanar in threes, and lie in eight

planes forming the associated eight-face.

277. Eight-point or eight-face with given diagonal tetra-

hedron. We will now show that a twelve-face eight-point can



PROJECTIVE METHODS IN THREE DIMENSIONS 359

always be uniquely constructed if the diagonal tetrahedron ABCD
and one vertex P are arbitrarily given. Join PA to meet BCD at
El and on PA take P

x harmonically conjugate to P with regard to
A

, 2?j. In like manner construct P2 ,
P3 ,

P4 .

Through P draw a line to meet the two opposite principal diagonals
BC, AD at F

x , Gi and on F
XGX take Qx harmonically conjugate

to P with respect to F
x ,
Gx . In like manner, from the opposite

principal diagonals (CA, BD

)

(.AB , CD) construct Q2 , Q3 .

It is clear that, since PP2 ,
PP3 ,

PQ
X

all intersect BC, the four
points P, P2 , P3 , Qx lie in a plane cc

x through BC . Now if a2 is

the plane through BC harmonically conjugate to a* with regard to
ABC

,
BCD, then since {APE

X
P

X
}= — 1 and on this transversal

A, P, E
x
lie on ABC

,
ax , BCD respectively, P

x
lies on a2 . Similarly

P4 lies on oc2 . Further, if F2 , G2 are points on AC, BD such that
F2PG2 is a straight line and {F2PG2Q2}

= - 1
, then since P2 , P, G2 lie

on ABC, <x x ,
BCD respectively, Q2 lies on a2 . Similarly Qz lies on a2 .

The eight points therefore lie in fours on two planes a1? a2
through BC, harmonically conjugate with regard to BCA

,
BCD.

Similarly they lie in fours on two such planes px , through CA
and on two planes yx , y2 through AB, etc.

They form accordingly a twelve-face eight-point having ABCD
for its diagonal tetrahedron.

In like manner a twelve-point eight-face is uniquely determined
from its diagonal tetrahedron and one face, which can be arbitrarily

given.

Examples

1. Prove that no new points can be obtained by repeating the construction,
starting from any of the seven points Pv P2 , P8 , P4 , Qv Q z , Qz ,

2. Prove that any twelve-face eight-point can be homographically trans-
formed into any other, and also that any twelve-point eight-face can be
homographically transformed into any other.

3. Show that a twelve-face eight-point is entirely determined from five
arbitrary points in space, no four of which are coplanar, three of these being
principal diagonal points and two being complementary vertices of the
eight-point.

4. Prove that any twelve-face eight-point and its associated twelve-point
eight-face can be homographically transformed into a cube and its inscribed
regular octahedron.

EXAMPLES XV
1. Five skew lines a, b, c, d, e have two common transversals l, m

;

and
the transversals n, n' from one point E of e to the pairs of lines a, b and
c, d respectively are coplanar with e. Show that the quadric bases of the
reguli (a, b, e) (c, d, e) have the same tangent plane at every point of e.
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2. The locus of the vertex of a cone of the second order inscribed in a given

skew hexagon is a quadric.

3. Through the points where the planes of an axial pencil meet a straight

line are drawn perpendiculars to these planes. Show that these perpendiculars

lie in a hyperbolic paraboloid.

4. If a wrap oftangent planes to a cone of the second order be homographic
with an axial pencil whose base does not pass through the vertex of the cone,

but which is such that the wrap and the axial pencil have one self-corresponding

plane, their product is a quadric.

6.

A range of points on a conic is homographic with a range on a straight

line not coplanar with the conic but meeting the conic at A. If A be a self-

corresponding point show that the joins of corresponding points of the two
ranges lie on a quadric.

6. Prove that the focal axis of a plane section of a right circular cone is

equal to the part of any generating line intercepted between its points of

contact with the focal spheres, and that the perpendicular axis is a mean
proportional between the diameters of the focal spheres.

7. Prove that the latus rectum of a plane section of a right circular cone

is proportional to the perpendicular distance of the plane of section from the

vertex of the cone.

8. In any plane section of a right circular cone, prove that the absolute

length of the non-focal semi-axis is a mean proportional between the distances

of the vertices on the focal axis of the section from the axis of the cone.

9. Prove that the generators of a quadric through the extremities of

conjugate diameters of a plane section of the quadric intersect on two planes

parallel to the plane of the section.

10. A parallelogram ABCD is inscribed in a quadric ip

:

prove that any
plane parallel to that of ABCD meets the tangent planes to ip at A, B, C, D
in the four sides of a parallelogram.

11. Show that if two quadrics have a common generator the generators of

the other system in each quadric, which intersect on their common twisted

cubic, form homographic reguli.

12. Prove that through any point P of space a quadric can be drawn
containing a given twisted cubic and a given chord of it.

Show that through P one chord, and one only, of a given twisted cubic can
be drawn.

13. Prove that a unique quadric surface can be drawn through a given

twisted cubic t and two given points not on the same chord of t.

14. Prove that every twisted cubic can be obtained as the intersection

of two cones of the second order, whose vertices A and B lie on the cubic

and that the rays joining A and B to any four points P, Q, B, 8 of the cubic

are equi-anharmonic in the conical pencils of the second order formed by the

generators of the cones.

15. Two given homographic star fields have different vertices. Show that,

iftwo corresponding lines of the stars intersect, their intersection lies on a given

twisted cubic.

16. Two given homographic plane fields lie in different planes. Show that,

if two corresponding lines intersect, the plane through them envelops a

developable of the third class.
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17. Homographic ranges of the third order on a twisted oubio being defined

as ranges which are projected from any chord of the oubic by homographio
axial penoils, with a corresponding definition for an involution on the cubic,

prove that the joins of pairs of mates (P, P') of an involution on a twisted

cubic are the generators of a regulus.

Show also that the involution (P, P') belongs to the biaxal space involution

whose axes are those generators of the complementary regulus which pass

through the double points of the involution (P, P').

18. If A, B\ Ct A\ By G' are six fixed points of a twisted oubic, P any point

of the curve, prove that the transversals from P to the pairs of lines (AB\
A'B) (BC\ B'C) (CA\ C'A ) lie in a plane n

;

and show that, as P describes

the curve, n turns about a fixed chord of the cubic, which joins the self-

corresponding points of the homographic ranges of the third order defined on
the cubic by the triads (.4, P, 0), (A't B\ C').

19. Prove that a developable of the third class is entirely determined by
any six of its tangent planes, and show how to construct (a) the tangent

to the cuspidal edge, (b) the point of contact of this tangent with the cuspidal

edge, corresponding to any one of these tangent planes.

20. Show that the common tangent planes to two quadrics with a common
generator envelop a developable of the third class, and that, through each of

the generators of one system in each quadric, two planes of the developable

pass, but through each of the generators of the other system there passes

only one plane of the developable. Show further that, in general, an

arbitrary line does not lie in a plane of the developable and cannot in any
case lie in more than two.

21. Prove that the tangent planes of a developable of the third class meet a

given tangent plane of the developable in a pencil of the second order ;

and hence that every such developable can be generated by the common
tangent planes to two conics which have a common tangent line.

22. Two plane fields in planes 7^, 7r 2 are in space perspective. Show that

cross-joins A 2BV A X
B2 meet on a fixed plane y passing through and

that the two fields define a harmonic space perspective, in which y is the

plane of perspective.

23. a, ft
are two planes ; a, b two non-coplanar lines in space which both

meet a/?. Show that if Pl9 P2 be points of a, £ respectively such that PXP2

meets a and 6, the correspondence between the plane fields [PJ, [P2]
*s

homographic.

24. Prove that, if two harmonic space perspectives have the pole of either

lying on the plane of perspective of the other, and a field <j> corresponds to

<l> 1
in one perspective and to tf> 2 in the other,

<f> 1
and

<f> 2
are related fields in a

harmonic biaxal homography.

25. Prove that, of the six faces through each of two complementary vertices

of a twelve-face eight-point, three are common and three are opposite.

26. Two complete quadrilaterals have in common two vertices on a

diagonal and also the two vertices of the diagonal triangle on this diagonal.

Show that their remaining vertices form a twelve-face eight-point.

27. Discuss the problem of constructing a tetrahedron of which the vertex

O shall be in a given plane a, the faces that meet at 0 shall pass through

given lines Z, m, n and the base ABC shall be an equilateral triangle in a

given plane /3. How many solutions are there ?
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28. Show that the intersection of a plane n1 of a star vertex with the
corresponding line p2 of a reciprocal star vertex 02 lies on a quadric Q passing

through 019 Og, and the intersection of and 7ra lies on the same quadric.

Prove that Q meets any plane a in the locus of incident points in the reciprocal

fields determined on oc by the stars.

20. If
<f>,

<p' be two reciprocal fields in different planes, the plane joining a
point of ^ to its corresponding line of

<f>'
envelops a quadric Q, the tangent

cone to which from any point O is the envelope of incident planes in the two
reciprocal stars of vertex O by which

<f>,
<p' are projected from O.

30. Show that, given three skew lines a, 6, c, a definite line d exists in space,

which is harmonically conjugate to a with respect to 6, c in a regulus.

Show further that two polar lines with respect to a quadric ip determine,
in each system of generators of tp, an involution, and find the double lines of
these involutions.



CHAPTER XVI

FURTHER PROPERTIES OF QUADRICS

278. Self-polar tetrahedron. Let P be any point, 7T its polar

plane with respect to a quadric, R a point of n, and p its polar

plane, which passes through P. Also let S be a point of np, and

or its polar plane, which passes through both P and R and meets

7rp at a point T. Then T lies on tt, p, a : its polar plane r is PRS.

A tetrahedron such as PRST is said to be self-polar with regard

to the quadric. Each vertex is the pole of the opposite face.

Any two of its vertices, or any two of its faces, or any two of its

edges, are conjugate with regard to the quadric and any two of

its opposite edges are polar lines.

Any three-edge a/?y whose faces are mutually conjugate for the

quadric iff is termed self-conjUgate for iff. If 8 is the polar plane

of the point a/?y, any two of the four planes a, /?, y, 8 are conjugate

for iff and the tetrahedron a/3y8 is self-polar. The triangle in which

the three-edge ay8y meets the plane 8 is self-polar for the section

of iff by 8
;
and the three-edge is therefore self-polar for the tangent

cone to iff from its vertex.

Again any triangle ABC whose vertices are mutually conjugate

for iff is termed a self-conjugate triangle for iff

;

it is self-polar

for the conic in which the plane ABC meets ip
;
and if D is the pole

of the plane ABC with regard to ip, the tetrahedron ABCD is

self-polar.

It should be noted that two edges of a self-conjugate three-edge,

or sides of a self-conjugate triangle, are conjugate, but not polar,

lines with respect to the quadric. The polar plane of any vertex

of a self-conjugate triangle contains the opposite side and the

pole of any face of a self-conjugate three-edge lies in the opposite

edge.

In general a self-conjugate three-edge does not meet an arbitrary

plane in a self-conjugate triangle, unless that plane is the polar

plane of the vertex of the three-edge. In like manner the lines

363
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joining the vertices of a self-conjugate triangle to any point do not

form a self-conjugate three-edge, unless the point is the pole of

the plane of the triangle.

If, however, the quadric ift degenerates into a cone of vertex

0, then 0 is the pole of any plane it, not passing through 0. If

now a is any line through 0
,
a its conjugate diametral plane with

respect to the cone (Art. 241), then every line which meets a and

a is harmonically divided by the cone. In this case any point of

a may be regarded as the pole of a. If abc be a self-polar three-

edge of vertex 0 for the cone, then a, b
,
c will meet rr at points

A, B, C which are poles of a, jS, y respectively, so that A, By C, 0
are mutually conjugate in pairs ; thus OABC is a self-polar tetra-

hedron for the cone, and every such tetrahedron must have 0 for

a vertex.

In this case the self-polar three-edge through 0 meets every plane

n in a self-conjugate triangle, and every self-conjugate triangle

in a plane not passing through 0 is projected from 0 by a self-polar

three-edge.

If a twelve-face eight-point is inscribed in a quadric ip, then its

diagonal tetrahedron is self-polar for the quadric. For reverting

to the notation of Art. 273, if we take the four lines pxyl9 \
8^2 ,

j
82yi, j

82y2 through A, each of these is an edge of the eight-point

;

thus piyiy for example, contains the two vertices oqj8^, a2P1YV
A is the point 8/31y l

and the point where the plane BCD meets

Piyi is Gtfiiyi. But al5 a2 are harmonically conjugate with respect

to a, 8 by the property of the eight-point. Hence the point cnp
1yl

is harmonically conjugate to A with respect to a1 j
8

1y1 ,
a2j

8iyi

which are two points of the quadric on a chord through A . Thus

otftyi is a point on the polar plane of A. Similarly a/?jy2 ,
ocj82yi,

a)S2y2 all lie on the polar plane of A
,
which must accordingly be a.

Similarly
j
8 is the polar plane of By y of C and 8 of D. ABCD is

therefore a self-polar tetrahedron for ip.

It follows from Art. 277 that, if a self-polar tetrahedron for 0
be given, and also one point P on the quadric, seven other points

can be at once constructed, which lie on the quadric and form a

twelve-face eight-point. For, in the construction of Art. 277,

the same points P1? P2 ,
P3 ,

P4? Q\, Qs are obtained as points

of the quadric, if we make use of the properties that each face of

ABCD is the polar plane of the opposite vertex and that every chord

of the quadric intersecting two opposite edges of ABCD (which

are polar lines) is harmonically divided by these lines.
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Examples

1. Show how to construct a quadric, given a self-polar tetrahedron, and a
given point and plane as pole and polar.

2. Show that an infinite number of self-polar tetrahedra for a given

quadric can be constructed, having two given conjugate points P, Q for

vertices, and that their other vertices form an involution.

3. Prove that, if through an edge yd of a self-polar tetrahedron oifiyd

any plane n is drawn, meeting the opposite edge aj3 at E> the three planes

through P, namely a, £, 7r, form a self-conjugate three-edge.

4. Prove that, if on an edge CD of a self-polar tetrahedron ABCD a point

P is taken, the three points ABF form a self-conjugate triangle.

5. Prove that, if a quadric contains seven vertices of a twelve-face eight-

point, it must also pass through the eighth vertex.

6. Prove that if a quadric touches seven faces of a twelve-point eight-face,

it must touch the eighth face.

7. Show that, in general, one quadric can be described through three given

points of space and having a given tetrahedron for a self-polar tetrahedron.

8. If three quadrics have a common self-polar tetrahedron, their eight

intersections form a twelve-face eight-point, and their eight oommon tangent

planes form a twelve-point eight-face, and these have the same diagonal

tetrahedron.

279. Centre, principal axes and planes. The pole of the

plane at infinity is termed the centre of the quadric. The ellipsoid

and hyperboloids have their centre at a finite distance. The

paraboloids have no accessible centre. Lines and planes through

the centre are diameters and diametral planes respectively. As

in the case of the conic all diameters are bisected at the centre,

when this is accessible. Diameters of a paraboloid are parallel to

a fixed direction.

The polar plane it of a point P00 at infinity passes through the

pole of the plane at infinity and so is a diametral plane, which is

conjugate to all lines p passing through P00
. Such parallel lines

p determine chords of the quadric which are harmonically divided

by tt and P00
. Hence chords parallel to a given direction are

bisected by their conjugate diametral plane.

If d!

00
is a line at infinity, its polar line d! passes through the

pole of the plane at infinity and so is a diameter. Any point C

'

of d! is conjugate to every point of rf
00 for the quadric ;

hence C'

is the centre of the section of the quadric by the plane C'd°°, which

plane is conjugate to d Thus the locus of centres of sections

of the quadric by a system of parallel planes is the diameter

conjugate to those planes.

A self-conjugate three-edge , whose vertex is the centre forms a
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system of three conjugate diameters, and its faces a system of three
conjugate diametral planes. Any one of its edges is the diameter
conjugate to the opposite face.

In the case of an ellipsoid or hyperboloid with centre 0, any three

mutually conjugate diameters form three edges of a self-polar

tetrahedron OA^B^C™. Chords parallel to a diameter OA 00 are

bisected by its conjugate diametral plane OA00^00
;
and the locus

of centres of sections by planes parallel to a diametral plane OR00^00

is the diameter 0A°° conjugate to that plane.

The plane at infinity meets the quadric in a conic A00 . In general
A00 and O have one and only one common self-polar triangle

Z00
*/
00^00

. The lines O/00
, OJ°°, OK00 are the only set of three

mutually perpendicular conjugate diameters of the quadric, and
are termed the principal axes of the quadric. Each is per-

pendicular to its conjugate diametral plane
;

these three planes
are called the principal planes of the quadric. A principal

plane is a plane of symmetry for the quadric, since every chord
parallel to an axis is bisected by the perpendicular principal

plane.

In the case of a paraboloid k°° degenerates into a line-pair, namely
the two generators of the quadric in the plane at infinity. In this

case there is still a common self-polar triangle Z^J00#00
,
but one

vertex A00
is now the double point of the line-pair, that is, the

point of contact of the plane at infinity with the paraboloid, and
Z 00

, J00 determine two perpendicular directions in a plane per-

pendicular to the direction of K00
. There are now two accessible

principal planes, namely those which bisect chords passing through
Z00

,
«Z°°

; these are the polar planes of Z00 J00 and their intersection

is the only accessible principal axis of the paraboloid. The polar
plane of A00 is the plane at infinity itself

;
the other two axes are

therefore at infinity. As before, the accessible principal planes are

planes of symmetry for the paraboloid, which therefore has only
two-plane symmetry. In any set of three mutually conjugate
diameters of a paraboloid, two are in the plane at infinity

;
and

the plane at infinity must be one of any set of three conjugate
diametral planes.

Returning now to the case of the general quadric, with accessible

centre 0, if i00 and O touch at two points A °°, A00
,
they have any

number of common self-polar triangles, namely those having for

vertices the common pole A00 of A^B00 with respect to ^°° and O
and any pair of conjugate points Z°°, J00 on A^B™. There is
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accordingly a determinate axis OX00
,
but any two rectangular lines

O/00
, OJ00 in a plane perpendicular to OK00 are also axes. Further,

any section of the quadric by a plane through Z00*/00 contains

A00
,
B°°. Since these are circular points, this section is a circle,

of which the centre lies on the axis OK°°. Thus sections of the

quadric by planes perpendicular to OJf00 are circles, whose centres

lie on OK°°. The quadric is therefore a surface of revolution, and,

in the case of an ellipsoid, is termed a spheroid*

Finally, k00 and O may coincide, in which case every triangle

self-polar for O gives a set of axes. The quadric then

contains O and reduces to a sphere, since every plane section of

it is then a circle. Any set of conjugate diameters of a sphere is

trirectangular and thus a set of principal axes.

The reader can easily trace for himself the modifications of the

above necessary for the (real) paraboloid of revolution. It may,

however, be worth while to point out that A°°, B*° are necessarily

conjugate imaginary points, for K00
is here real, and the planes

perpendicular to the direction of Zf00 are also real, and therefore

must meet O in two points A °°, 500 which are conjugate imaginary.

Now A00 cannot then be a real line-pair, for A^B™, joining con-

jugate imaginary points, would be real, and its intersections d 00
,

Z?°° with k°° would also be real, which is not the case. Thus A00

is an imaginary line-pair and a paraboloid of revolution must be

an elliptic paraboloid (Art. 257).

280. Asymptotic cone and planes of circular section. The

tangent cone to the quadric ip from the centre touches the quadric

along the conic &00 in which tp meets the plane at infinity. This

cone is termed the asymptotic cone of the quadric. Since it

meets the plane at infinity in the same conic that the quadric does,

it has the same axes and principal planes as the quadric.

Also any plane n meets the quadric and its asymptotic cone in

two conics q and t which have their points at infinity common
and so are similar (Art. 235).

Hence planes parallel to the cyclic planes of the asymptotic

cone cut the quadric in circles (Art. 250). The tangent planes

parallel to the planes of circular section meet the quadric in point-

circles. Their points of contact are called umbilies of the quadric.

Since there are six cyclic planes, of which two are real, there are

twelve umbilies, of which four are real
;
and they lie in fours in

the three principal planes.

25



368 PROJECTIVE GEOMETRY

An ellipsoid, since it has no real points at infinity, has clearly no

real asymptotic cone. On the other hand a hyperboloid has a

real asymptotic cone. We have seen in Art. 257 that if the tangent

planes at infinity meet the quadric in real lines, then the hyper-

boloid has real generators ;
this requires that the hyperboloid

should lie outside its asymptotic cone, since the tangent plane to a

cone of the second order, like the tangent to a conic, has no real

points inside the cone. The surface consists of a single sheet

entirely surrounding the cone. Hence the name hyperboloid of

one sheet.

If, on the other hand, the hyperboloid has no real generators, the

tangent planes to the asymptotic cone do not intersect the hyper-

boloid in real generators. The quadric then consists of two sym-

metrical portions, one inside each of the two opposite half-cones

which make up the asymptotic cone. Hence the name hyperboloid

of two sheets (see Art. 257).

In the case of a quadric of revolution, since h00 has double

contact with O, the asymptotic cone is a right circular cone

(Art. 245) whose axis is the axis of revolution.

The asymptotic cone of a sphere is, of course, the spherical cone

through the centre.

In the case of a paraboloid fc
00 becomes a line-pair, whose members

are w00
,
v00

,
say. There is here no accessible centre, the asymptotic

cone degenerates into the envelope of the tangent planes through

the generators w°°, v00
,
that is, into the line-pair k°° itself.

If E7
00

,
F00 are the points in which a plane y perpendicular to

the accessible axis meets w00
,
v00

,
respectively, let x

, y be the second

generators of the paraboloid through E7
00

,
F00

. Then x, y belong

to opposite systems, so that w00
,

i>°°, x, y form a skew quadrilateral

of generators. The tangent planes xu°°, yv™ at LJco . F00
, are termed

the asymptotic planes of the paraboloid. They intersect in the

polar line of E/^F00
, that is, in the accessible axis. Also they are

harmonic with respect to the two accessible principal planes, since

a pair of conjugate planes through the axis are harmonic with

respect to the two tangent planes through the axis. Thus the

accessible principal planes bisect the dihedral angles between the

asymptotic planes.

Since lines parallel to the accessible axis already meet the para-

boloid in one real point at infinity on that axis, they meet the surface

at only one other real point. Thus every real paraboloid is a one-

sheeted surface.
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The point xy is termed the vertex of the paraboloid and the

plane xy is the tangent plane at the vertex and perpendicular to the

accessible axis.

A plane parallel to this axis meets the paraboloid in a section

which touches the plane at infinity at its point of contact with the

paraboloid. Such sections are therefore parabolas whose axes are

parallel to the accessible axis of the paraboloid.

A plane perpendicular to the axis meets the paraboloid in a conic

passing through C7
00

, F°°.

If &00 is a real line-pair, the paraboloid is a hyperbolic para-

boloid
;
the points f/

00
, F00

,
the asymptotic planes, and the lines

x, y are all real, and the sections by planes y perpendicular to the

axis are hyperbolas having parallel asymptotes. The line-pair xy

divides these hyperbolas into two sets, which lie on opposite sides

of the plane xy and in supplementary dihedral angles formed by

the asymptotic planes, so that the surface is saddle-shaped.

If k°° is an imaginary line-pair with a real double point, the

points E/
00

,
F00

,
the asymptotic planes and the lines x

, y are con-

jugate imaginary. The paraboloid is then an elliptic paraboloid,

which lies entirely on one side of the plane xy

;

all its sections by

planes perpendicular to the axis are ellipses.

Examples

1. A tangent plane to the asymptotic cone meets the quadric in parallel

generators belonging to opposite systems.

2. Prove that two intersecting generators of a quadric are asymptotes of

the section of the asymptotic cone by the plane containing the generators.

281. Common self-polar tetrahedron of two quadrics. Let

0i, 02 be two quadrics, P
2
any point, 77 its polar plane with respect

to 01? P2 the pole of n with respect to 02 . The relation between

the fields [P
x ], [P2] is algebraic and one-one. Moreover, if P

x

describes a line pi9 t

t

revolves about the polar line p of pi with

respect to 0X ,
and P2 describes the polar line p2 of p with respect

to 02 . Straight lines therefore correspond to straight lines and the

space fields [Px ], [P2] are homographic. This homography has,

in general, four, and only four, self-corresponding points A, B, C, D,

each one of which has the same polar plane, a, /?, y, S respectively,

with respect to 0X , 02 . Since fiyS has BCD for its polar plane with

respect to both 0X , 02 ,
the vertices of the tetrahedron ccfiyS must

be identical with the points A, B, C, D so that the tetrahedron
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ABCD is self-polar for both quadrics, and is the only such tetra-

hedron.

If we now transform the fields [Px ], [P2], by a homography, so

that By Cy D become trirectangular points at infinity, the quadrics

become coaxial quadrics, with a common centre at the point

corresponding to A. All non-metrical properties of two quadrics

can therefore be derived from those of two coaxial quadrics.

The fields [Px ], [P2], however, may have more than four self-

corresponding points
;

this happens when they are related by a

uniaxal or biaxal homography, or by a space perspective.

If the homography between [P
x ], [P2] is uniaxal, and x is the

axis, then # is a line of self-corresponding points. If x meet 0 X

at A and B, the tangent planes a, to 0X
at A, B are polar planes

of Ay B respectively with respect to both 0X
and 02 , so that A, B

lie in their polar planes with respect to 02 and a, touch 02

at A, B . Hence 0X , 02 have double contact and intersect along

two conics. If 0, D are the two self-corresponding points of the

homography not on x
y
U any point of xy the plane XJCD has the

same pole V for both quadrics. V is therefore a self-corresponding

point of the homography, which is not in general coincident with

U
} C or D and therefore is a point of x

}
which is harmonically con-

jugate to V with respect to A, B. We have then an infinite number

of common self-polar tetrahedra VVCD.
If the homography between [P

x ], [P2 ]
is biaxal, then, if the axes

Xy y meet 0X
at A, B

; C, D respectively, we have, as before, that

0 X , 02 touch at the four points Ay B
y C, D, in which case their

intersection is a skew quadrilateral of generators. It is then easily

shown that if (S, T), (U, V

)

are any pairs of harmonic conjugates

with respect to (A, P), (C, D) respectively, the tetrahedron STUV
is self-polar for both quadrics.

If the homography between [P
x ], [P2] is a plane perspective,

it is proved as before that the quadrics touch all along a conic k

in which they are both cut by the plane of perspective. The

vertex of the common tangent cone is a self-corresponding point of

[Px ] [P2] not in the plane of perspective, and so is the pole 0 of

perspective. If ABC is any self-polar triangle for the conic k,

OABC is a common self-polar tetrahedron for both quadrics.

So far we have considered those special cases where there are

more than four self-corresponding points of [Px ] [P2]. But other

special cases also arise when two or more of the four self-corre-

sponding points Ay By Cy D coincide, in which case there are less
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than four points which have the "same polar plane for both

quadrics.

First let A and B coincide along a line u. Then A lies in its

polar plane BCD=ACD with respect to both quadrics. These

accordingly touch at A
,
the plane ACD being the common tangent

plane : CD and u are common polar lines for ip2 .

Let, further, 0 and D also coincide along a line v. Then A lies

in its polar plane Av and C lies in its polar plane Cu
,
with respect

to both quadrics. Hence i/q and i/j2 touch at A and C, the tangent

planes Av, Cu passing through AC. Thus AC is a generator of

both quadrics, the remainder of their intersection being a twisted

cubic. The lines u
,
v are polar lines for both quadrics.

If A, B, C coincide, the sides BC
,
CA, AB approaching a, b, c

as limits, then A is the pole, with regard to both quadrics, of three

planes aD
,
bD, cD, all passing through AD, but generally distinct.

li A, B, C, D coincide, then A is the pole, with regard to both

quadrics, of four planes a, j8, y, S through A, which are generally

distinct.

This clearly implies that the relation between pole and polar

plane is no longer unique for either quadric
;
hence «/q, ift2 must

be degenerate quadrics. Moreover, the homography between the

fields [PJ, [P2] would cease to be determinate.

Such cases must therefore be excluded from consideration here,

unless the above three (or four) planes happen to coincide. When
this is so, the point A will be found to be a point where the quadrics

have contact of higher order
;
the investigation of this will, however,

be omitted.

282. Pencil and range of quadrics. The ten coefficients in

the equation of a quadric through eight given points must satisfy

eight linear equations
;
they can therefore in general be expressed

as homogeneous linear functions of two arbitrary parameters A*, A2 .

The equation of any quadric through the eight points is therefore

of the form

A]$! + A2$2 =0,

where Si, S2 are definite expressions of the second degree in the co-

ordinates. Every quadric through the eight points therefore passes

through the twisted quartic curve of intersection of the quadrics

S
x ~0, S2

= 0.

Hence the set of quadrics through eight given points contains in

genera] a determinate twisted quartic.



372 PROJECTIVE GEOMETRY

It should be noted that the above reasoning assumes that the

eight given points are of sufficiently general position for the eight

linear equations satisfied by the coefficients to be linearly inde-

pendent. It will be shown later (see Art. 292) that all quadrics

through seven given points pass also through an eighth fixed

point.

Such a set of quadrics is termed a pencil of quadrics and their

common twisted quartic will be referred to as the base of the

pencil.

Through any point of space, not lying on the above quartic, one

quadric of the pencil passes.

. Reciprocating the above results we see that the quadrics which

touch eight given planes touch a determinate developable of the

fourth class. They are said to form a range of quadrics, and the

developable is termed the base of the range.

One quadric of the range touches any given plane, which is not

a tangent plane of the base developable.

283. Properties of a pencil of quadrics. A pencil of quadrics

determines an involution on any straight line. Two quadrics of

the pencil touch this straight line at the two double points of this

involution. These two double points are conjugate for all the

quadrics of the pencil and may be said to be conjugate points

for the pencil. Since two pairs of mates determine the double

points of an involution, it is clear that if two points P, P' are

conjugate for two quadrics ifji9 ift2 of a pencil, they are conjugate for

the pencil. If then v

r

l9 7r2 are the polar planes of P with respect

to ift|, their meet ^'= 7tj, 7t2 is the locus of points P' conjugate

to P for the pencil, and we may call this the line conjugate to

P for the pencil.

The conics in which the quadrics of a pencil meet any plane

form a pencil of conics passing through the four points in which

the twisted quartic which defines the pencil meets this plane.

Three of the quadrics of the pencil therefore meet the plane in

line-pairs, that is, they touch the plane at the centres of the line-

pairs. These centres are the vertices of the common self-polar

triangle of the conics in which the pencil of quadrics meets the

plane. Hence :

In every plane there is one triangle self-conjugate with regard

to all the quadrics of a pencil. Its vertices are the points of

contact of the three quadrics of the pencil which touch the plane.

A pencil of quadrics has, in general, one, and only one, common
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self-polar tetrahedron. For let ABOD be the common self-polar

tetrahedron of two of the quadrics of the pencil, «/q and ^2 » then

any pair of its vertices, such as A, jB, are conjugate for every

quadric 0 of the pencil, and therefore the tetrahedron is self-polar

for every such quadric ift.

Cases of exception arise, as in Art. 281, whenever there are one

or more points where all the quadrics of the pencil touch. The

detailed discussion of these cases will be omitted.

Any ray through a vertex, say A
,
of the common self-polar

tetrahedron of a pencil of quadrics, which meets the quartic base

at a point P, meets it again at a point P'. For, if AP meet the

opposite face of the tetrahedron a,tL,AP meets both quadrics again

at the point harmonically conjugate to P with respect to A and L.

This point, therefore, lies in the quartic base. Hence the four points

P, P', R, Rf

in which any plane through A meets the quartic lie

in two pairs (P, P')
(
R

,
R') on rays through A. The quartic is

therefore projected from A by a cone which has two generators in

any plane through A , that is, a cone of the second order. A similar

result holds for the other vertices B, C, D of the tetrahedron.

Hence, in general, four of the quadries of a pencil are cones,

whose vertices are the vertices of the common self-polar tetra-

hedron of the pencil.

The above assumes that the common self-polar tetrahedron is

both unique and proper.

Of the cases of exception we will only consider one, namely that

when the quartic base breaks up into two conics. In this case the

common self-polar tetrahedron has two distinct vertices A and B
through which pass two cones of the pencil and an edge CD every

point of which has the same polar plane for every quadric of the

pencil. This edge is the double line of the plane-pair formed

by the planes of the two conics. The two remaining cones of the

pencil therefore coalesce with this plane pair.

If the quartic base reduces to a skew quadrilateral, no proper

cone can be drawn through the intersection, but there are then two

plane-pairs, of which the diagonals of the skew quadrilateral are

the double lines.

If we take a point P on the twisted quartic common to a pencil

of quadrics, the twelve-face eight-point of which P is a vertex and

ABCD the diagonal tetrahedron is inscribed in every quadric of the

pencil, and therefore in the twisted quartic. By varying P we see

that an infinite number of such eight-points can be inscribed in
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any twisted quartic which is the intersection of two quadrics. In

view of the degenerate character of the self-polar tetrahedron

for two quadrics with a common generator the same result does not

generally hold when the quartic breaks up into a line and a twisted

cubic.

An important particular case of a pencil of quadrics occurs when

two of the quadrics are spheres ;
the quartic base then breaks up

into the circle at infinity and an accessible circle c (which may be

real or imaginary) lying in a real plane a, which is termed the

radical plane of the two spheres.

Clearly every quadric of the pencil contains O and so is a sphere.

Also each passes through the circle c
;
and any two have a for their

radical plane.

Such spheres provide an analogue of coaxal circles in a plane, and

may be called coaxal spheres. Their centres lie on the line through

the centre of c perpendicular to its plane. Also any plane meets

such a pencil of spheres in a set of coaxal circles.

It is easily proved that the tangents from any point on the radical

plane to all the spheres of the pencil are equal. There are two cones

of the system, which are spherical cones and therefore point-

spheres lying on the line of centres, giving the limiting points of the

system. All spheres through the limiting points meet every sphere

of the pencil orthogonally and have their centres on the radical

plane. These spheres, however, do not form a pencil of quadrics.

Their centres all lie on the common radical plane of the original

pencil, and they provide another type of three-dimensional

generalisation of coaxal circles, namely spheres through two

points.

284. Polar quadric of a line for a pencil of quadrics. It is

clear that the polar plane tt of P with regard to a quadric 0 of a

pencil passes through the line p' which is conjugate to P for the

pencil.

If now 7r be a given plane through p', 0 is uniquely determined.

For, if P do not lie in the base quartic, let Q be any point of the

base quartic
;

join PQ meeting tt at S and let R be harmonically

conjugate to Q with respect to P, S. Then R is a point of 0 and,

in general, determines 0 uniquely. If P lies on the base quartic,

p
r

is the tangent line at P to the base quartic, tt is the tangent plane

at P to the quadric 0. A line in 7r, other than p', gives a point of

0 ultimately coincident with P, but not lying on the base quartic,

and this also determines 0. Hence, when tt is known, 0 is de-
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termined, and conversely. Thus the pencil of quadrics [ip] is

homographic (cf. Art. 208) with the axial pencil [tt].

If now u is any straight line, P1} P2 two points of it, ni9 n2 their

polar planes with regard to a quadric \p of the pencil, we have

[WlMfl-Kfa].
Hence 7r

1
7r2 generates a regulus in a quadric <p, in which the

axes pi , p2 of [7^], [7t2] are generators of the other system.

Now 7Ti7r2 is the polar line of u with respect to ip and is inde-

pendent of the choice of Pl9 P2 .

Thus the polar lines of a given line u with respect to the quadrics

of a pencil form a regulus of generators of a quadric <p 9 which is the

polar quadric of u with regard to the pencil.

Since has been shown to be a generator of <p of the other

system, and P
x
can be taken arbitrarily on u, the conjugate lines

to points of u with respect to the pencil form the second set of

generators of the polar quadric.

Finally any point Q of the polar quadric of u lies on a line

conjugate to a point P of u with regard to the pencil, and so is

conjugate for the pencil to a point P of w, and also lies on the

polar line of u with regard to some quadric ip of the pencil, so that

it is the pole of some plane through u with regard to ip.

Thus the polar quadric is also :
(i) the locus of points conjugate

to points of u for the pencil
;

(ii) the locus of poles of planes through

u for quadrics of the pencil.

The polar quadric <p oi u passes through the vertices A
,
B

,
C9
D

of the common self-polar tetrahedron of the pencil. For if the

plane BCD meet u at U
9
then A and U are conjugate for the pencil,

so that A must lie on <p ;
and similarly for B,

C and D.

<p also passes through each of the two points of u which are

conjugate for the pencil [ip]
9
since each of these is conjugate to a

point of u
,
namely the other point of the pair.

Note also that <p meets any plane A through u in the eleven-point

conic of u for the pencil of conics in which [ip] meets A.

285. Polar cubic of a plane for a pencil of quadrics. Let n be

any plane, A, B, C any three non-collinear points on it, a, /?, y

the polar planes of A f
B

9
C with regard to a quadric ip of a

pencil.

By Art. 284, a, jS, y correspond in homographic axial pencils,

whose axes are the lines a, 6, c conjugate to A, B, C for the pencil.

Thus the locus of aj8y=P, that is of the pole of ABC^tt, when

ip is varied, is a twisted cubic, of which (i, 6, c are chords. This
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cubic will be termed the polar cubic of tt with respect to the

pencil of quadrics. It passes through the points of contact of the

three quadrics of the pencil which touch tt, and also through

the vertices of the common self-polar tetrahedron of the pencil,

for, if D be any such vertex, D is the pole of any arbitrary plane

and therefore of tt, with respect to the cone of the pencil which

has D for vertex.

Since the pole of tt lies on the polar line of any line in tt, it

follows that the polar cubic of tt lies in the polar quadric of any

line in tt.

In particular, if tt is the plane co
00 at infinity, the locus of the

centres of the quadrics of a pencil is a twisted cubic passing through

the vertices of the common self-polar tetrahedron and through

the three points at infinity where co
00 touches the three paraboloids

of the pencil.

If the centre-locus meet a quadric ip of the pencil at P, the

tangent plane tt to ip at P meets cu
00 in a line i

00
. Since tt is the

polar plane of P for ip, and o>°° is its polar plane for some other

quadric of the pencil, t
00 =a>00

7r is the line conjugate to P for the

pencil.

If now one quadric of the pencil is a sphere or, of centre 0, P
is conjugate to all the points of i

00 for or. Hence the polar line of

i
00 for a is OP and consequently OP is perpendicular to all planes

through i
00

,
and thus to tt. Therefore OP is the normal to ip at P.

But it has been shown (Art. 266) that a twisted cubic meets a

quadric at six points. There are accordingly six points P and six

normals OP which can be drawn from 0 to the quadric ip.

The centre-locus of the pencil defined by ip and any sphere a of

centre 0 passes through the feet of the six normals from 0, through

0 itself, through the centre C of ip, through the four vertices of the

self-polar tetrahedron of a and ip and through the points of contact

Z°°, Y°°, Z°° of the paraboloids of the pencil with a>°°.

But the last three points Z00F^Z00 form the common self-polar

triangle of Q and the conic &00 in which \p meets o>°°. They thus

correspond to three rectangular directions, mutually conjugate for

\p, that is, to the directions of the principal axes of \p.

Thus the asymptotes of the twisted cubic are parallel to the

principal axes of ip.

The properties of this twisted cubic are thus analogous to those

of the hyperbola of Apollonius (Art. 222) and it may be termed the

cubic of Apollonius for the point 0 and the quadric ip.
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Example

The six normals from a point to a quadric lie on a cone of the second
order, of which three generators are parallel to the axes, and which contains
the centre of the quadric.

286. Properties of a range of quadrics. The properties of a
range of quadrics are immediately derivable from those of a pencil

of quadrics by reciprocation. We will note the following :

The tangent cones from any point P to the quadrics of a range
form a system touching four planes of a star vertex P.

Through any point P three quadrics of the range can be made
to pass, the tangent planes to which at P form a three-edge self-

conjugate for all the quadrics of the range.

A range of quadrics determines an involution of pairs of tangent
planes through any straight line not in a common tangent plane,

the double planes of the involution being the tangent planes to

the two quadrics which touch the line.

Two planes which are conjugate for each of two quadrics of a
range are conjugate for every quadric of the range, and the tetra-

hedron self-polar for two quadrics of the range is self-polar for every
quadric of the range.

To any general plane tt corresponds a line p' through which pass
all planes conjugate to n for the quadrics of the range and which
is also the locus of poles of tt for the quadrics of the range.

Taking tt at infinity the locus of centres of the quadrics of a range
is a straight line.

The surface generated by the lines p corresponding to planes

rr through a given line p is a quadric touching the four faces of the

tetrahedron self-polar for all the quadrics of the range.

The poles of any two given planes with respect to a variable

quadric of a range correspond, in general, in two ranges of the first

order, which are homographic with each other and with the range
of quadrics.

Bearing in mind that a cone reciprocates into a conic we see,

reciprocating the property of Art. 283
,
that in general

:

Four of the quadrics of a range are disc quadrics, whose
planes are the faces of the common self-polar tetrahedron of

the range.

287. Confocal quadrics. Consider the range determined by
any quadric ipQ (not a paraboloid) and the circle Q at infinity (a
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degenerate case of a quadric). There are three conics of this range,

besides the circle at infinity. Their planes a, /?, y and the plane at

infinity form the self-polar tetrahedron of the range : oc, jS, y are

therefore three conjugate diametral planes of any quadric tft of

the range. They form a self-conjugate three-edge for every quadric

of the range, in particular for Q. Hence they are faces of a tri-

rectangular three-edge, so that oc, /?, y are principal planes of every

quadric of the range.

Hence the quadrics iff of such a range are concentric and coaxial.

There are three conics of the range lying each in one of the three

common principal planes.

These conics are called the focal conics of iff : every point of

them is called a focus of iff.

The quadrics iff are said to form a confocal system.

Let F be any point of a focal conic. Then the tangent cones

from F to the quadrics of the confocal system form by Art. 286 a

system of cones touching four fixed planes through F. Now
consider the tangent cone to a conic from any point in its plane.

This tangent cone (treated as an envelope) reduces to the two

tangents from the point to the conic. Hence the tangent cone

from F to the focal conic consists of two coincident tangents to

this conic at F. The four fixed planes therefore consist of the two

tangent planes to any cone of the system through the tangent line

to the focal conic at F, each such tangent plane being doubled
,

that is, its line of contact being given. Hence every cone of the

system touches two fixed planes through F along given lines through

F in these planes, or the tangent cones from F to the system of

confocals have double contact. But one of these tangent cones is

the tangent cone to O, that is, it is the spherical cone through F.

The tangent cones from F to the system of confocals have therefore

double contact with the spherical cone
;

that is, they are right

circular cones.

Foci of a quadric are thus points, the tangent cones from

which to the quadric are right circular.

Through every point P three quadrics iffX , if/2 , ^3 °f a confocal

system can be drawn. The three tangent planes 7ri9 7r2 ,
7r3 form'

a three-edge self-conjugate for the range, and therefore for £)•

Hence they are mutually perpendicular, and the quadrics are

orthogonal at all their points of intersection.

The line p\ which is the locus of the poles of 7r
t
for the confocal

quadrics, contains the pole of 77^ for O and so is perpendicular to
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n
l

. It must also pass through the pole of nl for ipi, that is, through

the point P. Hence the locus of the poles of a fixed plane

with respeet to a set of confoeal quadrics is the normal to the

confoeal which touches at its point of contact with

Examples

1. Prove that if ip is the locus of lines conjugate to planes tt through a line

p for a range of quadrics, the generators of tp belonging to the complementary
system are the polar lines of p for the quadrics of the range.

2. Prove that a single focal conic defines a family of confoeal quadrics.

3. Show that, if t is the tangent at P to the intersection of two confoeal
quadrics fa, the tangent planes through t to any other confoeal quadric
of the system are equally inclined to the tangent planes at P to fa, ipr

4. If the quadric ip0 of the above Article be a paraboloid, prove that the
range consists entirely of paraboloids, and that there are only two focal
conics, instead of three.

288. Lines of curvature on a quadric. A line of curvature
on any surface is defined as a curve on the surface such that the

normals to the surface at the points of this curve generate a develop-

able. This is sometimes expressed by saying that the normals to

the surface at any two consecutive points intersect.

If the normals to the surface at two points P, Q intersect, and

Q approaches P in such a manner that the normal at Q always

intersects the normal at P, the tangent at P to the locus of Q gives

the direction at P of a line of curvature on the surface.

If the surface be a quadric tfa the two generators PA, PB through

P intersect the generators QA
,
QB through Q at A ,

B. The normals

at P and Q are perpendicular to the tangent planes PAB
,
QAB

and therefore perpendicular to AB. These normals intersect if,

and only if, they are coplanar and so lie in a plane perpendicular

to AB. The necessary and sufficient condition for this is that PQ
is perpendicular to AB. Since PQ and AB are polar lines for i/j,

the condition for the normals at Q, P to intersect is that PQ should

be at right angles to its polar line.

When Q comes into coincidence with P along a curve satisfying

this condition for every position of Q, the tangent t at P to this

curve is perpendicular to its polar line t\ Since t lies in the tangent

plane at P, and passes through P, so does its polar line t' ; and
t, t' are harmonic conjugates with respect to the two generators

through P. Since t, t' are at right angles they bisect the angles

between the generators.
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Hence there are two lines of curvature through P, touching

t, t' respectively at P. The lines of curvature on *p therefore

form two orthogonal systems ; the tangent to a line of

curvature at any point is a bisector of the angles between
the generators through that point.

Note that, since the tangent plane at an umbilic (Art. 280
)

meets the quadric in a point-circle, if the point P above is an
umbilic, the generators through P are circular lines, and any tangent

line through P is perpendicular to its polar line. Thus an infinite

number of lines of curvature, lying in all possible directions on the

surface, pass through an umbilic.

Let now ipit xp2 be the two quadrics confocal with ip through P,

and 7r, ttj, 7t2 the tangent planes at P to ip, ipi, ip2 respectively.

The three planes ir, 7

r

1? 7

r

2 form a three-edge self-conjugate for the

confocal quadrics. Therefore the pole L of 77^ for \p lies on 7nr2 ;

also the pole of 77 for ip is P. The polar line of 77771 for \p is therefore

PL=~=7nr2 . But 7T, 7tu 7

r

2 are orthogonal (Art. 287
) ;

hence tttt1

and 7T7t2 are perpendicular polar lines for ip, and therefore tangents

at P to the lines of curvature through P on ip. Since this is true

of every point P on the intersection of ip with ip
x (or ip2), it follows

that the lines of curvature on a quadric ip are the intersection

of ip with the quadrics of the confocal system to which
belongs.

289., Principal radii of curvature. The result of the first part

of Art. 288 may also be obtained in a different manner.

Let 0 be a point of a quadric ip
;
cut the quadric by a plane 7

r

parallel to the tangent plane at 0 . The section is a conic k, which

is often spoken of as the relative indicatrix of 0, which the

student should be careful not to confuse with the spherical in-

dicatrix mentioned in Art. 255 .

Let ON be the normal at 0
,
meeting 7r at AT

. Through N four

normals can be drawn to the conic k
}
of which let the feet be

Pi, P& P3, P4. At Pi the tangent to the conic k is perpendicular

to NPi ,
and, since it lies in 7r, it is also perpendicular to ON.

Therefore it is perpendicular to the plane ONPi. Now the tangent

to A at Pi is also a tangent to the quadric at Px ,
and a plane

perpendicular to it must contain the normal to the quadric at P\.

Accordingly the normal at P\ to the quadric lies in the plane

ONPi and so must intersect ON. Similarly the normals at p2 .

P3, P4 intersect ON. Hence, if n is made to move up to the
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tangent plane at 0, the loci of Pls P2 , Pi touch at 0 the lines

of curvature through 0 .

Now the centre C of k is the point where the diameter of ifs

through 0 meets n, and the ratio CN : ON is therefore constant,

if 7t remains parallel to the tangent plane at 0. On the other hand,

if P is any point of k, the angle NOP approaches a right angle as

N moves up to 0, so that the ratio ON : NP approaches zero.

Accordingly the ratio CN : NP approaches zero, that is, N approxi-

mates to the centre of the indicatrix. Thus, as we approach the

limit, Pi, P2 , P3, P4 approach the feet of the normals to k from its

centre, and the tangents to the lines of curvature at 0 are parallel

to the axes of the indicatrix.

Since parallel sections of a quadric are similar and similarly

situated, the asymptotes of k are parallel to the generators of \p

through 0, and the axes of k are parallel to the bisectors of the

angles between these generators, confirming the result obtained in

Art. 288.

If we now consider the circle in the plane 0NP1 which touches

the quadric at 0 and passes through Pla its radius Px is given by

20N.Rx =0Pi 2
, In the limit, when the plane 7t approaches the

tangent plane at 0, this circle has three-point contact with the

normal section of the quadric containing the tangent to the line

of curvature which touches the locus of Pj. Calling px
the radius

of this circle, pi is the limiting value of R
x

.

Similarly if P2 describes a curve touching the other line of curva-

ture at 0
,
so that P1? P2 approach different axes of the indicatrix,

the radius of curvature p2 0 of the normal section touching the

second line of curvature is the limiting value of P2 ,
where

2.0N.R2 =0P2
2

.

These two normal sections are termed the principal normal

sections of ip at 0 ;
the centres Ku K2 of their circles of curvature

at 0 are the principal centres of curvature of ip at 0
; pif p2

are the principal radii of curvature at 0.

When the principal radii of curvature pl5 p2 are known, the radius

of curvature p of any other normal section, whose plane makes an

angle <p with the principal normal section affected by the suffix 1,

is easily obtained. For if this plane meet the indicatrix k at U,

and R is the radius of the circle in this plane touching the quadric

at 0 and passing through U
,
then 2.0N.R=0U2 =0N2 +NU2

;

and p is the limit of R. When the indicatrix is taken so near to

the tangent plane at 0 that we may take N to coincide with the
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centre C of the indicatrix without sensible error, then, approxi-

mately

2.0N.p-CU*; 2.0N.Pl =CA*; 2.0N.p2 -CB* y

where CA ,
CB are semi-axes of the indicatrix k, and if M be the

foot of the perpendicular from U on CA, then CM=*CU cos
(f>,

MU =CU sin<f> 9 to the same approximation.

Also we have (Art. 76)

cm MU2

CA*
+
CB*

~ 1 *

whence
1 cos2

(f>
sin2

(f>

ClT*
=
~CA*

+
CB* •

Multiplying by 2.ON and proceeding to the limit, we obtain

1 cos2
(f>

sin2
(f>

P Pi P2

This formula shows that Pi and p2 are the maximum and minimum
values of the radius of curvature of a normal section at 0.

To justify the above procedure it should be noted that, although

all the terms in the above approximate equations vanish in the

limit, the ratio of the terms neglected to those which actually appear

also tends to zero, so that the final formula is not approximate

but exact.

We note that Pi : p2 is in the ratio of the squares of the semi-axes

of the relative indicatrix k when rr approaches the tangent at 0
;

but since all such conics k are similar and similarly situated, the

ratio in question is the ratio of the semi-axes of any relative in-

dicatrix for all parallel positions of ir.

If now a conic be constructed in the tangent plane at 0, which

is similar and similarly situated to any relative indicatrix, but

with its centre at 0 and on such a scale that the squares of its semi-

axes are equal to the corresponding principal radii of curvature

Pi, P2 > this will be called the absolute indicatrix of 0. If now
the plane NOU above meet the absolute indicatrix at P, we find

that

1 cos2 cf> sin2 <j> 1

oF2= "7T
+
~pT

=
p’

so that p=0P2 and is given by the square of the corresponding

radius-vector of the absolute indicatrix.



FURTHER PROPERTIES OF QUADRICS 383

290. Curvature of oblique sections. Mounter’s Theorem.
Let P be any point of a surface ip (which need not here be restricted

to be a quadric), PT any tangent line, a and 0 two planes through

PT meeting the surface in curves A, k
,
which must touch PT at

P
;

then, if P, S be any two points on A, k respectively, a sphere

<r can be uniquely described touching PT at P and passing through

R and Sy since its centre C is determined by the meet of the per-

pendicular to the plane PRS through the eircumcentre of the

triangle PRS and the plane through P perpendicular to PT.

The planes a, /? meet the sphere a in circles c, d respectively,

which touch PT at P and pass through P, S respectively, so that

c touches A at P and meets it again at R
,
and d touches k at P

and meets it again at S.

If now R
, S coincide with P, cr becomes a sphere having four-

point contact with the surface ip at P. Also the circles c, d become
the circles of curvature of A, k at P. The centre C of a will then

be on the normal to ip at P.

Let a be taken to contain this normal, so that A is a normal

section of ip through PT
;

c is then a great circle of a; if makes
an angle 0 with a, d is a small circle of the sphere, touching c and

inclined to c at an angle 0. The spherical centre of d is therefore

at an angular distance 0 from the spherical pole of c, and the

7T

spherical radius of d is - - 0
9 so that its actual radius is R sin I

A

or R cos 0, where R is the radius of the sphere, that is, of c.

Hence, if the radius of curvature at P of a normal section A

of a surface ip is P, the radius of curvature of an oblique

section touching A at P and inclined to the normal section at

an angle 0 is R cos 0. This is known as Meunier’s Theorem.
It is clear that the circles of curvature of all plane sections

"through PT must lie on the same sphere <7 ,
since this sphere is

entirely determined by the radius of curvature of the normal section

through PT, and is independent of the choice of /?.

But it should be noticed that, to different tangent lines PT
will correspond different radii of curvature of normal sections

(see Art. 289) and therefore different spheres <7. Thus, whereas in

the plane we have only one circle having three-point contact with

a given curve at a given point, there are an infinity of spheres

having four-point contact with a given surface at a given point.

These are determined from the data that they have a common
tangent plane at P (giving three coincident points) and, in addition,

26
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pass through another point R which coincides with P in a specified

plane.

MeunierV Theorem enables us to see easily that the osculating

plane of a line of curvature is not, in general, the normal plane

to the surface of which it is a line of curvature. For if </f2

are two confocal quadrics, their intersection is a line of curvature

on each of them. Taking a point P on this line of curvature, the

corresponding principal radii of curvature of if/l9 ifj2 will be p x , p2
say. If now p is the radius of curvature of the line of curvature,

considered as a twisted curve (Art. 253), and the osculating plane

of this curve at P make an angle 9 with the tangent plane 7Tl to

tpi at P, p=p2 cos 9, p=px
sin 0

,
by Meunier’s Theorem, so that

1 1 1

and tan 9=p2jp x
.

In general p x
and p2 are neither zero nor infinite, so that 9 is

neither zero nor a right angle.

291. Quadrics Of curvature. If P be any point of a quadric </r,

another quadric i/j' can be drawn through P and eight other specified

points. If two of the other eight points lie on i/j they may be made
to come into coincidence with P in different directions

;
in the limit

i/j and i/j' will then have the same tangent plane at P. If now three

more of the eight points lie on i/j and are brought into coincidence

with P in three different directions, the common normal planes

through each of these directions meet i/j, i/j' in conics having the

same radius of curvature p at P. The absolute indicatrices of

P for i/j and i/j' have then a common centre and three other common
points, and therefore must coincide entirely. Thus the quadrics

i/j and i/j' have the same directions of principal curvature at P and

the same curvature in every normal section through P. By
Meunier’s Theorem they have also the same curvature in every

oblique section through P.

Since the sections for which the radius of curvature is infinite

lie in the same planes, the quadrics must have the two generators

through P common, so that the remainder of their intersection

is a conic. The plane of this conic must pass through P, since

the plane joining P to any two other common points Q, R (not lying

in the tangent plane at P) meets the quadrics in two conics passing

through Q, R and having three-point contact at P, so that the two

conics coincide entirely.
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A quadric 0' which has contact of this kind with any surface a

will be termed a quadric of curvature for <j at the point P of

contact. The directions at P of the lines of curvature on 0' are

the directions at P of the lines of curvature of a and the principal

radii of curvature of a at P are those of 0'. The curvature prop-

erties of a at P are therefore identical with those of any quadric

of curvature of a at P . Since six of the nine points which determine

0' have been made to coincide with P, a quadric of curvature at P
can, in general, be made to pass through three other given points

;

in particular it may be made to touch a given plane at a given

point, so that there is one paraboloid of curvature at P with its axis

in any prescribed direction.

292. Net Of quadrics. If a quadric passes through seven given

points, we can show as in Art. 282 that its equation may be put

into the form

A]$1 + A2S2 + ^3$3 =

Si, S2 , $3 being given expressions of the second degree in the

co-ordinates and Ax , A2 ,
A3 arbitrary parameters. This quadric

passes through the intersections of the three quadrics

Si-0, s2 -o, £3=0,

that is, quadrics satisfying such a condition pass through eight

fixed points. Thus, in addition to the seven given points, there

is an eighth fixed point, which is determined by the seven first,

and through which the quadrics pass.

Such a set of eight points is termed a set of eight associated

points.

The quadrics through seven given points are said to form a net

of quadrics of which the given points are base points.

It should be noticed, however, that every quadric through seven

given points on a twisted cubic curve passes through the curve,

since, in general, a twisted cubic cannot meet a quadric in more

than six points unless it lies entirely in the quadric (Art. 266).

In this case the quadrics through the seven points form a net having

the cubic for base curve.

The quadrics of a net which pass through another given point Px

form a pencil, and so have a twisted quartic in common.

Consider then two pairs of quadrics of the net 0/) and

(02, 02’)> not belonging to the same pencil. Let Px
be a point on

the intersection of (0j, \p{) other than the eight associated points,

the base points of the net. Then the quadrics of the net, which
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pass through Px , contain the intersection of 0X and 0X\ Similarly

if P2 be a point on the intersection of 02 and 02
' the quadrics of

the net which pass through P2 contain the intersection of 02 and

02
'. Therefore the quadric of the net which passes through both

Pi and P2 contains the intersections of 0X , 0X
' and of 02 , 02

'.

We deduce that if four quadrics 0X , 02 >
be such that

the intersection of 0X , 02 and that of 03 , 04 lie on a quadric 0 the

same is true however we choose the two pairs out of the four

quadrics.

For consider the net defined by the quadrics 01# 02 , 03 . Any
quadric through the intersection of two quadrics of the net is a

quadric of the net. Therefore 0 is a quadric of the net
;
therefore

04 which passes through the intersection of 03 and 0 is a quadric

of the net. 0X , 02 , 03 , 04 are therefore four quadrics of a net and

the result follows.

We obtain also the following important theorem of plane

geometry.

If there be four conics $x ,
s2 ,

s3 ,
s4 such that the four points of

intersection of s l9 s2 and the four points of intersection of s3 ,
s4 lie

on a conic s, the same is true of any other two pairs chosen out of

the four conics.

Through sl9 s2 ,
s3 describe any three quadrics 0X , 02 , 03 . These

will define a net. A quadric 0 of the net can be drawn through

one of the intersections of s lf s2 and one of the intersections of

s3 ,
s4 . It will therefore contain, besides the eight points common

to 0j, 02 , 03 ,
another point common to 0X , 02 and thus the whole

intersection of 0X , 02 . Hence 0 contains the four intersections

of Si, s2 and one intersection of s3 ,
s4 ;

therefore it contains the

conic s. Now through the intersection of 0 and 03 draw a quadric

04 to pass through any given point of s4 . This quadric cuts the

plane in a conic having five points common with s4 and therefore

identical with 84 .

Four such conics *x , s2 ,
s3 ,

s4 are therefore the intersections

of four quadrics of a net by a plane. The theorem is then obvious.

293. Conjugate points with regard to a net of quadrics.

If two points P, P' are conjugate with regard to three quadrics

0X , 02 , 03 of a net, not belonging to the same pencil, they are

conjugate with regard to all quadrics of the net. For if 04 be any

other quadric of the net, we have seen by the above that a quadric

0 exists belonging to both pencils (0X , 02 )
and (03 , 04). If P, P'
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are conjugate with regard to 02) they are also (by Art. 283)

conjugate with regard to 0. Also 0, 03 , 04 are quadrics of a

pencil. Hence P, P' being conjugate with regard to 0, 03 , they are

also conjugate with regard to 04 .

Thus to every point P of space corresponds a point P' conjugate

to P with regard to the net. P' is obtained as the intersection of

the polar planes of P with regard to any three quadrics of the net,

not belonging to the same pencil. Hence the polar planes of P with

regard to the quadrics of the net pass through a fixed point P'.

294. Web of quadrics. A web of quadrics is the system of

quadrics touching seven fixed planes. Reciprocating the properties

of a net of quadrics we obtain the following :

The quadrics of a web touch an eighth fixed plane. If four

quadrics 0 1? 02 , 03 , 04 belong to a web the common tangent planes

to 0x and 02 and the common tangent planes to 03 and 04 all touch

a quadric 0.

To every plane of space there is one plane conjugate with regard

to a web of quadrics, i.e. the poles of a fixed plane with regard to the

quadrics of a web lie on another fixed plane.

In particular if the given plane be taken at infinity the locus of

centres of quadrics of a web is a plane.

295. Any two quadrics may be transformed into one another

by reciprocal polars. Two quadrics 0lf 02 which have a proper

common self-polar tetrahedron may be transformed (Art. 281)

into coaxial quadrics 0X
', 02

' by a homographic transformation.

If ax ,
b

x ,
cx

and a2 ,
b2 ,

c2) be corresponding semi-axes of 0/, 02
',

construct a coaxial quadric 0' with corresponding semi-axes a, b
,
c

,

where a2 = ± a xa2 , b2 = ± bxb2 , c2 = ± cxc2 . On reciprocation with

respect to 0', the vertices of ifjx
transform into the tangent planes

at the vertices of 02
' and the tangent planes at the vertices of 0X

'

into the points of contact of the corresponding tangent planes to 02
'.

The reciprocal of 0/ is therefore a quadric 0/' having the same

vertices as 02
' and touching the same planes at those points

; any

principal plane thus intersects 0/' and 02' in conics which touch

at four points, and therefore coincide. Since 0i", 02' intersect

in three different conics they must coincide altogether ; hence

0i'> 02* are P°lar reciprocals with respect to 0'. On reversing the

homographic transformation 0' is transformed into a quadric 0
with respect to which 0lf 03 are polar reciprocals. Owing to the

alternatives of sign there are in all eight such quadrics 0.
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If we now consider the case where a2 = +a1o2 and take A , Ay, A2

the vertices of fa, fa', fa' on the same side of the common centre 0,

then A i
transforms by reciprocal polars with regard to fa into the

tangent plane at A2 and conversely. There are four quadrics fa

for which this is the case. If 0 is now removed to a large distance,

A
, Ai, A 2 remaining accessible, A approaches the middle point of

A\A2 and fa, fa', ip2 approach paraboloids having AyA2 as their

common accessible axis and having common accessible principal

planes. Thus two such paraboloids fa', fa' are reciprocal polars

with respect to each of four coaxial paraboloids fa.

If we start with two quadrics fa, ip2 touching at a single point B,

these quadrics do not have a proper common self-polar tetrahedron,

but two of the vertices of their common self-polar tetrahedron

coincide at B
,
and the remaining vertices C and D lie in the common

tangent plane at B
,
and are, in general, distinct from B. If we now

apply a homographic transformation in which B
,
C

,
D are trans-

formed into points at infinity in mutually perpendicular directions,

tpy, ip2 are transformed into coaxial paraboloids ipy', fa' and there

are four paraboloids fa with respect to which fa', fa' are reciprocal

polars. Transforming back there are four quadrics ip with respect

to which the given quadrics fa, ip2 are reciprocal polars.

Similarly other cases where more than two of the vertices of the

common self-polar tetrahedron coincide may be regarded as limits

of a more general case
;
without going into details, we may expect

that in such cases there will be at least one quadric with respect to

which fa, fa are polar reciprocals, this being the limit of one or more

such quadrics in the more general case.

296. Quadrics outpolar and inpolar to a quadric. If there

be one tetrahedron ABCD inscribed in a quadric fa and self-polar

for another quadric ip2 ,
it will now be shown that there must exist

any number of tetrahedra A'B'C'D

'

inscribed in fa and self-polar

for fa ;
one vertex A' may be arbitrarily selected on fa and a

second vertex B' may be any point of fa which is conjugate to A'

for fa.

Let a be the polar plane of A with respect to fa, that is, the plane

BCD
;
a meets fa, fa in conics 1cu k2 and BCD is clearly a triangle

inscribed in ky and self-polar for k2 . Thus ki is outpolar to k2 .

If now A' is an arbitrary point of fa, let I be a point in which

the polar plane a' of A' with respect to fa meets ky. Since L is a

point of kl9 there exists a triangle LMN inscribed in ky and self-

polar for k2 . The tetrahedron ALMN is then inscribed in fa
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and self-polar for 02 . The plane AMN is the polar plane of L
with respect to 02 and it passes through A\ since L, A ' are conjugate

for 02 . If this plane meets 0t , 02 iu conics sXi s2 , then, as before, 8
X

is outpolar to s2 , and there exists a triangle A'M'N' inscribed in 8X

and self-polar for s2 ,
so that the tetrahedron A'LM'N ' is inscribed

in fa and self-polar for 02 .

The plane LM'N' is then identical with a'. If it meet 0j, 02

in conics k2 then, again, kx is outpolar to k2 ;
any point Bf

of
\jji

conjugate to A ' for 02 is a point of kx and is one vertex of a

triangle B'C'D' inscribed in kx and self-polar for k2\ The tetra-

hedron A'B'CD' is then inscribed in 0x and self-polar for 02 .

A quadric ipi which is such that there are tetrahedra inscribed

in
\fjx

and self-polar for another quadric 02 is said to be outpolar

to 02 -

In a similar maimer we can show that, if one tetrahedron is

circumscribed to i/j
x
and self-polar for 02 ,

an infinity of such

tetrahedra can be constructed, one face a of which can be taken as

any tangent plane to i/j
x
and a second face is any tangent plane

to 0x conjugate to a for 02 .

The quadric ifjx
is then said to be inpolar to 02 .

If there be a tetrahedron ABCD inscribed in a quadric 0X and

self-polar for a quadric 02 ,
so that i/q is outpolar to 02 , let 0 be a

quadric with respect to which 0l5 02 are polar reciprocals (Art. 295).

Reciprocating with respect to 0, ABCD is transformed into a

tetrahedron aj8yS circumscribed to 02 and self-polar for 0X . Thus,

if 0x is outpolar to 02 ,
then 02 is inpolar to 01#

297. Outpolar and inpolar envelopes and loci of two quadrics.

In general, a plane does not cut two quadrics 01? 02 in conics kXi k2
such that k

x
is outpolar to k2 . This may, however, happen in

certain cases.

Let l be any line, P a point where it meets 0j, tt the polar plane of

P with regard to 02 ,
meeting l at R. Then tt meets 0X , 02 in conics

^l> $2*

Let s be the harmonic envelope (Art. 201) of sl9 s2 . From R
draw two tangents r, r' to s

,
determining planes p = Pr, p =Pr\

which pass through l.

If r meet s
x
at U, V then, by the property of the harmonic

envelope Z7, V are conjugate for s2 and therefore for 02 . Since

U, V Ue in tt, they are conjugate to P for 02 , so that PI
rJV is self-

conjugate for 02 and is inscribed in the conic kx
in which p meets 0j.

If p meets 02 in the conic k2 ,
then kx

is outpolar to k2 . Similarly
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the conic h\ in which p meets fa is outpolar to the conic k2 in

which p' meets

Thus through any line l two planes can be drawn, meeting

the quadrics in conics satisfying the given conditions. The planes

for which this holds therefore envelop a quadric if* which may be

termed the outpolar envelope of fa with respect to fa. Clearly

there will be a second envelope of planes meeting the quadrics in

conics fa, k2 such that k2 is outpolar to ki. This may be called the

inpolar envelope of fa with respect to fa.

If, in the above, t/j2 is a cone, and l passes through the vertex of

the cone, n meets fa in a line-pair s2 . In this case the harmonic

envelope s is the product of ranges on the lines of s2 conjugate for s l

and the tangents r, r' coincide with the line-pair s2 . In this case

the tangent planes through l to ip coincide with the tangent planes

through l to fa, so that tp2 is a tangent cone to tp.

Reciprocating the above theorems, we have :

The locus of the vertex of a three-edge whose faces touch fa,

and which is self-conjugate for fa, is a quadric \p, the inpolar locus

of fa with respect to fa, or the outpolar locus of fa with respect

to fa.

If ip2 degenerates into a conic, this conic lies on ip.

A very important case of the latter is when fa is the circle at

infinity. The inpolar locus of xp
Y
with respect to O is then a quadric

containing O, that is, a sphere. This sphere is the locus of the

intersection of three tangent planes to tp
l
which are mutually con-

jugate for O, that is, mutually perpendicular. This is known as

the orthoptic sphere of fa.

Since tangent planes at the extremities of a diameter are parallel,

to every point of the orthoptic sphere corresponds a second point,

symmetrically situated with respect to the centre of the quadric.

The latter is therefore also the centre of the orthoptic sphere.

Examples

1. Prove that if V is a point on the outpolar locus of with respect to «/f
2 ,

any number of three-edges with V for vertex exist, whose edges touch
and which are self-oonjugate for «/r

2 .

2. If fa, i/j2 are polar reciprocals with respect to a quadric fa the inpolar

locus of t/r2 with respect to </> contains the intersection of ^ and ifjv
3. Prove that the outpolar envelope of a quadric fa with respect to another

quadric i/j2 touches the tangent plane to at any point P of the intersection

of fa, fa.
State the corresponding property for the outpolar locus of fa with respect

to fa.



FURTHER PROPERTIES OF QUADRICS S91

4. In any transformation by reciprocal polars which transforms into ^r
8,

the inpolar locus of «/x
2 with respect to fa reciprocates into the outpolar

envelope of fa with respect to </r2 .

298. Pencil of quadrics outpolar to a quadric. If two

quadrics fa, fa of a pencil are outpolar to the same quadric iff,

every quadric of the pencil is outpolar to ip.

For let fa be any other quadric of the pencil, A any point of the

twisted quartic q which defines the pencil. The polar plane a of A
with regard to ip will meet fa, fa, fa, ip in conics fa, fa, fa, k .

The conics fa, fa, fa belong to the same pencil in a. But fa, fa

are both outpolar to k. Hence, by Art. 232, every conic of the

pencil is outpolar to k, and therefore fa is outpolar to k. We can

therefore find a triangle BCD inscribed in fa, which is self-polar for

k, and therefore self-conjugate for iff. Hence the tetrahedron ABCD,
which is clearly inscribed in iff3 ,

is self-polar for iff, which proves what

is required.

As a particular case, if the twisted quartic breaks up into two

conics, the plane pair through these conics is conjugate for iff.

If the quadrics fa, fa are spheres outpolar to the same quadric iff,

the last-mentioned case arises, the plane-pair being the common
radical plane and the plane at infinity. The common radical

plane then passes through the centre C of iff . Thus the sphere a

of centre C, whose radius is the distance from C to the limiting

points of the pencil (fa, fa) is orthogonal to all the spheres of this

pencil which are necessarily spheres outpolar for ifj.

In particular the point-spheres of the pencil are the vertices

of spherical cones outpolar for iff, that is, such that ift is inscribed

in three-edges self-polar for these spherical cones ;
these are tri-

rectangular three-edges, so that the point-spheres in question lie on

the orthoptic sphere of iff. This orthoptic sphere is therefore

orthogonal to every sphere of the pencil
;
and since fa, fa were

arbitrarily selected in the first instance, the orthoptic sphere of ifs is

orthogonal to every sphere outpolar to iff.

EXAMPLES XVI

1. Prove that the tangent planes at the vertices of a twelve-face eight-point

inscribed in a quadric form a twelve-point eight-face having the same diagonal

tetrahedron.

2. If two non-parallel circular sections of a quadric are given, show how to

find the directions of its axes.

The circles circumscribed about two triangles ABC, DEF, in different

planes, have a common diameter with the same extremities M, N ; and O
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1. Prove that if, in two collinear projective ranges, the self-corresponding

points coincide at O, and if P, P' be any other pair of corresponding points,

then

1 1

OP' OP
- con8t ‘

OA , OB, OC are three rays through 0, and the correspondence between
rays OP, OP' is defined as follows : if OQ is taken harmonically conjugate
to OP with respect to OA, OB, then OP' is harmonically conjugate to OQ with
respect to OA, OC. Show that the pencils [OP], [OP'] are projective and that
they have OA for a double self-corresponding ray.

2. Two conics k, k' have three-point contact at 0, and through 0 a ray is

drawn meeting the conics again at T, T'. The tangents at T, T' meet the
common tangent at 0 in P and P'. Prove that [P]7\ [P'] and that the self-

corresponding points coincide at 0.

What happens if the conics have four-point contact ?

3. Give a method of constructing a square whose sides taken in order shall

pass through four given points A, B,C, D. Perform the construction, having
given that AB— 2 inches, BC—CD= 2*5 inches, DA — 1*5 inches, and the
angle BAD= 120°.

4. Show how to cut the hyperbola whose equation in Cartesian co-ordinates is

x2
y
2

i
~

9
= 1 ^rom a circular cone.

5. ABC is an equilateral triangle of side 2 inches, lying in a horizontal

plane : the inscribed circle touches the sides AB, AC at D, E respectively.

From the point V, one inch vertically above A, the figure is projected upon the
plane through A parallel to the plane VBC. Draw the projection of the
triangle ADE, and find the vertex and focus of the projection of the circle.

[For clearness it is advisable to rabat through the obtuse angle.]

6. Draw a triangle ABC with sides P<7=3 inches, CA= AB=4: inches, and
mark the middle point D of AB. A parabola touches the three sides of the
triangle ABC and has its axis parallel to CD ; construct (i) the tangent at
the vertex, (ii) the axis, (iii) the directrix.

7. Given a conic k and a line p', not tangent to k, show how to find, by a
geometrical construction, (i) the point of contact of p' with the conic k'

which has four-point contact with k at a given point O and touches p', (ii) the
other extremity of the diameter of k' through O, (iii) the orthoptic circle

of k'.

8. IfABODEF ... be a closed polygon of any number of sides
; P, Q, R, 8,

394
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T, ... points of motion arbitrarily taken on .-IB, BC, CD, DE, EF, ... respec-

tively
;
prove that the value of the continued product of ratios

AP BQ CR DS ET
PB'QC' RD' SE'TF

"'

is unaltered by projection.

Hence show that, if P, Q, R, 8, T, ... are collinear, the value of the above

product is + 1 or - 1 according as the number of Bides of the polygon is even

or odd.

Is the converse of this theorem generally true ?

9. ABCD is a skew quadrilateral whose sides AB, BC, CD, DA are cut by a

plane at P, Q , R, 8 respectively. Prove that

AP.BQ.CR.DS=PB.QC.RD.SA ;

and conversely if P, Q, R, 8 be any four points on these sides, so chosen

that the above relation holds, then P, Q, R, 8, are coplanar.

Generalise the first part of this theorem for a skew polygon of more than

four sides.

Prove that if a sphere touch each of the sides of a skew quadrilateral

internally, the points of contact arc coplanar.

10. Any two tetrahedra ABCD , A'B'C'D' for which each pair of corre-

sponding edges AB, A'B ' meet have the joins of corresponding vertices

concurrent.

11. Show that the cross-axis of two coplanar projective ranges is parallel

to the line joining their vanishing points.

12. Given a conic k and a line x, show how to construct the centre of the

conic k' which touches k at a given point 0, passes through a second given

point A f not on k and meets x in the same two points (real or imaginary) as k.

13. The lines joining a point 0 to the vertices of a triangle ABC meet the

opposite sides at D, E, F and the sides of DEF at P, Q, R. Prove that BC,

EF, QR are concurrent at U, with a similar meaning for V and W ; that U, V,

W are collinear and that P, D are harmonically conjugate with respect to

0, A.
Show also that, when 0 describes a fixed line l meeting BC at X, P describes

a fixed line through X and UVW touches a fixed conic, which touches BC
at the harmonic conjugate of X with respect to B, C.

14. Two tangents a, b to an ellipse are parallel to the axes and a touches

the ellipse at A. PiP 2 » P 2^a* ••• are a number of equal segments on a .

From Pv Pt, etc. tangents are drawn touching the ellipse at Tv T2 , etc.,

respectively, and ATV AT2, ... meet b at Qv Q 2, ... respectively.

Show that the segments QiQ it Q 2Q 3 * • •• are equal.

15. Prove that if a variable tangent to a parabola meets two fixed tangents

at P and Q, the locus of the middle point R of PQ is a straight line.

16. A line AP drawn from the vertex A of a triangle to a point P in the

opposite side BC is divided at Q so that PQ : QA =BP : PC. Prove that the

locus of Q is a parabola which passes through B, touches AC at A and has its

axis parallel to BC.

17. Prove that, if P be a variable point on the fixed line l, C and E any

fixed points, b and d any fixed lines, then the conic passing through the

following five points : (1) P ; (2 ) bd ; (3) (CE, b) ; (4) E ; (5) (CP, d), passes

through a fixed point on l .
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18. Prove that if a conic touch the sides BC, CA, AB of a triangle ABC
at D, E, F respectively, and if AD, BE, CF meet the conic again at P, Q, R
respectively, the tangents at P, Q , R meet BC, CA, AB respectively at three

colhnear points.

19. Show that it is possible to construct a conic circumscribing a triangle

ABC and touching the parallels through A, B, C to the opposite sides.

20. Obtain a straight line construction for finding the fourth point of

intersection of two conics which pass through three points A, B, C, without

drawing the conics, two other points on each conic being given.

21. From a given point 0 on a conic k, any two chords OP, OQ are drawn,

and through their other extremities P, Q two chords PR, QS are drawn
parallel to OQ, OP respectively. Prove that US is parallel to the tangent

at 0.

22. Show that any two points A, B of the plane and the four points of

contact of tangents from A, B to any conic k in the plane are six points of a

conic.

State and prove the reciprocal result.

23. Prove that conjugate ranges with respect to a conic s, whose bases

a, b intersect on 8, are perspective from the pole of the chord joining the other

intersections of a, b with s.

Prove that conjugate pencils with respect to a conic s, whose vertices

A, B lie on a tangent to s, are perspective, the axis of perspective being the

polar of the meet of the other tangents from A, B to s.

If a point A of a line x is conjugate to more than one other point of that

line, x must be a tangent to the conic and A its point of contact.

24. A conic touches the sides BC, CA of a triangle ABC at points D, E
respectively, and meets AB at two points X , Y. The tangents at X, Y meet
at T, and U~(XD, YE), V= {XE, YD). Prove that each of the triangles

DEU, DEV is in perspective with the triangle ABC ; and that T, TJ, V lie on
the same line through C.

Show further that, if M, N be the meets of BC, CA with the tangents at

X, Y respectively, the lines AB, DE, MN are concurrent.

25. Prove that, if two conics kx, k2 touch at 0 and meet at two other

distinct points, and if through 0 any line be drawn to meet k
x , k 2 again at

P, Q respectively and R is harmonically conjugate to 0 with respect to P, Q,
then the locus ofR is a conic touching kv k 2

at 0 .

26. If l, m be a variable pair of perpendicular lines conjugate with respect

to a conic k whose oentre is 0, and l pass always through a fixed point P,

prove that in general m always touches a fixed parabola, of which the axes of

k and the polar ofP for k are tangents.

Show further that the tangents from P to this parabola bisect the angles

between the tangents from P to k, and that OP is the directrix of the parabola.

27. If in Fig. 26 A A', BB, CC meet at a point, show that the Pascal line is

the polar of this point.

28. Two triangles are inscribed in a conic. The sides of the one meet
the sides of the other in nine points. Show that the join of any two of

these nine points is a Pascal line of the six vertices of the triangles, unless it is

one of the sides of the triangles.

29. A variable tangent to a conic k meets two fixed perpendicular tangents

a, b at P, Q respectively ; and the perpendiculars to a, b at P, Q meet at R.
Prove that, if & is a central conic, the locus of I? is a rectangular hyperbola
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whose asymptotes are the tangents of k parallel to a, b

;

and that this

hyperbola passes through the points of contact of a and b with k.

Investigate also the locus of R when & is a parabola.

30. Given a focus of an ellipse, one point on the curve and one tangent

(not at the given point show that the locus of the second focus is one branch

of a hyperbola.

Construct the asymptotes of this hyperbola and find the least possible length

for the major axis of the ellipse.

31. The tangents to an ellipse at points P, Q meet at T, and $ is a focus

of the ellipse ; the circle on ST as diameter meets TP, TQ again at Y, Z
respectively. Prove that ST is bisected by the diameter of the ellipse

perpendicular to YZ.
Show that, if T describes the orthoptic circle of the ellipse, the middle point

of YZ describes a third circle, whose radius is half that of the orthoptic circle

;

and that the envelope of YZ is the conic which has one focus at the centre

of the ellipse, and the third circle for auxiliary circle.

32. Show that the common self-polar triangle of two circles which do not

intersect in real points is formed by the limiting points of the two circles

and the point at infinity on their radical axis.

33. Prove that if in two coplanar projective figures two pairs of corre-

sponding pencils are perspective, the same line being the axis of perspective

in both cases, then the two figures are altogether in plane perspective.

34. Show that the transformation by reciprocal polars is the only reciprocal

transformation in the plane for which every point P of the plane has the same
line for its reciprocal in the two figures.

35. If through the in-centre If of a triangle ABC, lines KL, KM, KN be

drawn, perpendicular to KA, KB, KC respectively, and meeting the opposite

sides BC, CA, AB at L, M, N respectively, prove that L, M, N lie on a

straight line which is the radical axis of K and the circle through A, B,C.

36. A central conic s has foci F, F' and corresponding directrices, /, /'.

A variable line l through F meets/' at Q and 8 at R, R '
;
and P is harmonically

conjugate to Q with regard to R, R'. Prove that the locus of P is a conic k,

which passes through F, F' and belongs to the pencil determined by 8 and its

orthoptic circle, and that the same conic k arises in this manner from lines

through F'.

If F'P meet / at Q', prove that the envelope of QQ' is a conic c oonfocal

with 8 and touching /, /' ; and that k, c are reciprocal with respect to 8.

37. A conic inscribed in a triangle has one focus at the circumcentre. Show
that the other focus is at the orthocentre and that the length of the major axis

is equal to the radius of the circumcircle.

[Use Ex. 35, reciprocating with respect to a circle centre A.]

38. Four conics pass through three given non-collinear points A, B, C
and have a fourth given point S for focus. Prove that the directrices which

correspond to S meet in pairs on the sides of the triangle ABC and form a

quadrilateral of which ABC is the diagonal triangle.

[Reciprocate with regard to S : the corresponding property of the inscribed

and escribed circles of a triangle is obvious.]

If one of the four conics is a circle show that the directrices of the other

three, which correspond to S, are the joins of the mid-points of the sides of

the triangle ABC.
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39. Show that the inverse of the cubic curve

x(x*+y*)-cy*

with respect to a circle whose centre is the origin 0 is a parabola with its

vertex at O.

Derive the following properties of this cubic curve by inversion from the

corresponding properties of the parabola :

(i) If the circle which touches the cubic curve k at any point P and passes

through 0 meets the axis of y again at Q, the circle through 0 and Q orthogonal

to this circle meets the axis of x again at a fixed point JR.

(ii) If the circles through 0 which touch k at points Pv P2 are orthogonal,

their second intersection lies on a fixed circle through 0

;

and 0, Pv Pa, E
are concyclic.

40. If two tangents to a parabola make equal angles with a fixed straight

line, show that the chord of contact must pass through a fixed point.

41. The three diagonals of a complete quadrilateral are divided harmonically

at P, P' ; Q, Q'
; JR, R' in any manner. Show that these six points lie on a

conic.

42. A fixed line l lies in the plane of a conic k ; and d is the diameter of k

conjugate to l . Through each point P of l a line p is drawn perpendicular

to the polar of P with respect to k. Prove that, when l is not a diameter of k,

these perpendiculars p all touch a certain fixed parabola, which touches l

and has its axis perpendicular to d. Show also that d is the directrix of this

parabola.

43. Prove that the in- and ex-centres of a triangle self-polar for a rectangular

hyperbola lie on the curve.

44. Prove that the tangent at a point P of a parabola and the common
chord of the parabola and its circle of curvature at P are equally inclined to

the axis of the parabola.

The normals to a parabola at P, Q, R arc concurrent, and the poles, with

respect to the parabola, of the common chords of curvature at P, Q, R are

X, Y, Z.respectively. Prove that the perpendiculars from X, Y, Z to their

respective polars are concurrent.

45. A family of conics have double contact with a circle of centre C at

two fixed points A , B. Prove that the foci of such conics on their axes parallel

to AB and the points of contact of tangents from C to the conics all lie on

the circle circumscribing ABC .

[Project the quadrangle ABQQ' into YlYl'AB ; Q, O' being the circular

points at infinity in the plane.]

46. A triangle ABC is circumscribed to a conic k, the base AB being of

given length and lying in a fixed tangent t to k. Show that the locus of the

vertex C is a conic having four-point contact with k at the point of contact E
of the tangent to k parallel to t.

47. If two tangents to a parabola make a constant angle (other than a right

angle) with each other, show that the locus of their intersection is a hyperbola

and that their chord of contact envelops a conic.

48. A variable conic k touches the sides of a triangle ABC and a fourth

fixed straight line L Prove that the locus of P, the point of concurrence of the

lines joining the vertices of ABC to the points of contact of k with the

opposite sides, is a conic 8 through A , B, C and that the range (ABCP) on s

is homographic with the range determined on any tangent to k by BC, CA,

AB and l.
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49. If an involution pencil of the first order is homographio with a simple
pencil of the second order, show that their product is in general a curve of the
fifth degree, having the vertex of the involution pencil for a multiple point of
the fourth order.

Prove also that every quintic with a quadruple point can be described in this

manner.

50. Tangents are drawn from a fixed point to each member of a range of
conics. Prove that the locus of the points of contact is a quintic curve.

51. Prove that if an involution of points on a conic is homographio with an
involution pencil whose vertex is not on the conic, there are in general six

points of the conic which lie in one of their corresponding lines.

Hence show that, in general, the product of two homographic involution
pencils of the first and second orders respectively is a sextic curve, the vertex
of the pencil of first order being a quadruple point.

52. Show that the product of an involution pencil of the second order and
a simple pencil of the first order, homographio with the first-named pencil, is a
quartic curve, of which the vertex of the second-named pencil is a double
point.

53. If a conic s1 be triangularly inscribed in another conic sa, prove that the
tangent to s x at a oommon point of a l9 s 2 passes through the point of contact
with s 2 of a common tangent of sl9 s2 .

54. The centre of a circle lies on a rectangular hyperbola and the centre
of the hyperbola lies on the circle. Show that the polar reciprocal of the
hyperbola with respect to the circle is a parabola, of which the centre of the
hyperbola is the focus, and prove that any two of these three curves are polar
reciprocals with regard to the third one.

55. Prove that the circle, hyperbola and parabola of the last example are

such that any one of the three is both outpolar to, and triangularly circum-
scribed about, any other.

56. If A, B be two fixed points on a sphero-conic, P a variable point on
the curve, and if the arcs PA, PB meet a cyclic line at X, Y respectively, show
that the arc XY is of constant length.

57. If through a point O on a sphero-conic two perpendicular great circle

arcs be drawn, meeting the sphero-conic again at two points (not antipodal
to each other or to O), the great circle arc through these two points passes

through a fixed dyad on the sphere.

58. Show that the envelope of joins of homographic dyads on a sphero-
conic is another sphero-conic, having double contact with the given sphero-
conic, antipodal contacts being reckoned as one.

59. Prove that the equation of the circle at infinity in plane co-ordinates is

l
2+m2+n2— 0.

60. In the case of a quadric of revolution show that the focal conics

reduce to (1) a circle in the diametral plane perpendicular to the axis of
revolution

; (2) two points F, F' called principal foci, symmetrically situated

with regard to the centre of the quadric on the axis of revolution.

61. If a quadric touch the six edges of a tetrahedron, the lines joining

each vertex of the tetrahedron to the pole of the opposite face are
concurrent.

62. Show that the locus of the polar of a given line with respect to a
system of confocal quadrics is a hyperbolic paraboloid, one ofwhose generators
is the line at infinity in the plane perpendicular to the given line.

27
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63. A wrap of planes [*]* of the second order in a star of vertex O is homo-
graphic with an axial pencil [tt-

1
], whose axis does not pass through O. If

M2
> [

7rl
] have a self-corresponding plane, show that their product is a regulus.

64. Prove that the product of a regulus and a homographic axial pencil is

in general a twisted cubic.

66.

State, and prove independently, the theorem reciprocal to that of
Ex. 64.

66. Prove that if through a fixed point O lines be drawn each of which
is perpendicular to its polar line for a given quadric, these lines generate a cone
of the second order.

Show that lines through a fixed point which are normal to quadrics of a
confocal system are generators of a cone of the second order.

67. P is a variable point on a fixed diameter of a quadric i/f, and R is the
foot of the perpendicular from P upon its polar plane with respect to xjj. Show
that the locus of R is a rectangular hyperbola.

68. Prove that the product of two homographic pencils of quadrics is, in

general, a surface of the fourth order ; and that the product of a pencil of

quadrics with a homographic axial pencil is, in general, a cubic surface.

69. Prove that, if a regulus or a conical pencil of the second order is homo-
graphic with another regulus or conical pencil of the second order (not having
the same vertex as the first conical pencil), then, in general, there are four rays,

and four rays only, which intersect their corresponding rays.

70. Two stars with different vertices O x, () 2 are reciprocally related.

Show that the locus of the meet of a line of either star with its corresponding
plane of the other is a quadric ip passing through 0 ly 0 2 , which meets any plane

a in the locus of incident points of the reciprocal fields determined in a by the

two stars.

71. If [P], [$], [JR], [$] be four projective ranges on four arbitrarily chosen
straight lines, prove that there are in general four, and only four, planes,

which contain four corresponding points P, Q , R, S.
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concentric, 141, 178, 220, 226,

241 ; through inverse points, 223
Circular
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developable, 323 ; of a plane
curve, 79 ; of a quadric, 335

;
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curve, 323
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;
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Confocal
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377
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Conic

construction of from given con-

ditions, 62, 90, 91, 93, 264, 267 ;

definition and types of, 52

;

determined by five conditions,

62, 63 ; is identical with curve
of second degree or second class,

196 ; fundamental points and
lengths connected with, 153

Conjugate
diameters of a circle, 77 ; of a

conic, 81, 83, 85 : harmonic
with respect to asymptotes, 81 :

parallel to supplemental chords,

82 : sum and difference of their

squares, 105, 107 ;

diameters and diametral planes of

cone of second order, 301 ;

elements of a harmonic form,

40, 116 ; hyperbola, 107

;

imaginary elements, 175 ;
lines

through a focus are perpendi-

cular, 145 ; linos with respect

to a range of conics, 260 ;
paral-

lelogram, 103 ; points and lines

with respect to a conic, 71, 73,

137, 150
;

points, lines and
planes with respect to a quadric,

337 ;
points with respect to a

net of quadrics, 386 ; points with
respect to a pencil of conics, 259 :

of quadrics, 372
Contact

.

of higher orders, 63, 64, 65, 108 ;

preserved in projection, 4
Co-ordinates, 170, 171

Correlation

in a plane, 208 ; in space, 350

;

uniquely determined by base
conics, 212

Cross-axis

of projective ranges in a plane,

44 ; of ranges of second order,

117; of homographic flat pencils

in star, 295
Cross-centre

of pencils of second order, 118;
of projective flat pencils in a
plane, 45

Cross-plane of homographic axial

pencils in star, 295
Cross-ratio

of four harmonic elements, 40

;

of four lines of a regulus, 332 ;

of four planes of an axial pencil,

172 ; of four points of a range,

29, 30 ; of four points on a
conic, 116; of four rays of a
flat pencil, 31 ; of four tangents
to a conic, 116; of two corre-

sponding elements and the self-

corresponding elements, 118

;

of two rays with the circular

lines, 179 ; unaltered by pro-

jection, 29 : or by homography,
189

Cubic
plane, 236, 237, 257, 258, 260;

twisted, 339, 342, 375, 376, 385
Curvature

circle and centre of for plane

curve, 63, 108 ; of any surface,

385 ; of normal sections of a

quadric, 380 ; of oblique sections

of a surface, 383 ; of parabola,

110, 165 ; of twisted curve, 324,

325 ; relations with radius of

torsion, 326, 327 ; spherical

—

of twisted curve, 324
Cuspidal edge, 322
Cyclic

arcs of sphero-conic, 314 ;
planes

of cone of second order, 314

Degree
of a plane curve, 79 ; of a twisted

curve, 318
Desargues’ Theorem on perspective

triangles, 11

Developable, 321, 322
osculating, polar, rectifying, 323

Diagonal

tetrahedron of an eight-point or

eight-face, 354 ; triangle, 42 :

of an inscribed quadrangle or

circumscribed quadrilateral, 72,

73 ; points of a quadrangle, 42
Diagonals

of an eight-point, 355 ; of an
eight-face, 356 ; of a quadri-
lateral, 42

Diameters
of a central conic, 81 ; of a cone,

301 ; of a parabola, 82 ; of a
quadric, 365

Diametral planes

of a cone, 301, 306 ; of a quadric,

365

Director-circle, 180
Directrices of a regulus, 333
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Directrix of a conic, 151, 163
its distances from the centre and

foci, 153
Disc quadrics, 336

of a range, 377
Double

contact of conics, 210, 265 : of

quadrics, 342

;

elements of an involution, 126, 131

;

points on a curve, 237, 245 ;

tangents to a curve, 238, 246
Duality, principle of, 80, 172
Dyad, 296

Eccentricity

of a conic, 152 : for each pair of

foci, 182 ; of a sphero-conic, 312
Elements

accessible, 6 ; at infinity, 5

;

coincident, 91 ; definition of, 2 ;

harmonic, 40 ; imaginary, 173,

175, 176 ; self-corresponding,

33, 35, 118, 119, 202, 214, 233,

243, 344
Eleven-line conic, 262
Eleven-point conic, 261
Ellipse, 52, 85, 102, 103, 104, 105,

146, 150, 153, 154, 155, 162

Ellipsoid, 328
Envelope

correlative to locus, 54 ;
harmonic,

244 ;
of chord subtending given

angle at focus, 219 ; of incident

lines of two reciprocal fields,

208 ; of fourth class, 246, 248 ;

of third class, 238
Equations

of conic referred to conjugate

diameters, 100 ; of homographic
transformation, 189, 191, 197,

343 ; of reciprocal transforma-

tion, 207, 350
Equator of point on a sphere, 297

Equi-anharmonic forms, 33, 54, 74,

116, 189, 293

Eaure and Gaskin’s Theorem, 287

Fields

involutory, 203, 347 ;
perspective,

1, 8, U, 203, 295, 298, 346, 349 ;

plane homographic, 196
;

pro-

jective, 4, 11, 20, 200, 202

;

reciprocal, 207, 208, 212, 350 ;

space homographic, 343, 347,

349 ; spherical, 298 ; star, 295

Figures

congruent, 15, 17 ; in plane per-
spective, 9 : obtained as pro-
jections of a third figure, 10

:

constructed from given condi-
tions, 18, 21, 23

:
particular

cases of, 15 ; in space per-

spective, 1, 8 ; projective, 17 ;

similar, 15, 18

Focal

axis of a conic, 146 ; chord of
curvature of parabola, 165 ;

chords of a conic, 159, 219

;

conics of a quadric, 378

;

distances, 150, 155 : equally
inclined to rectangular conjugate
lines, 150 ; lines of a cone, 308 ;

perpendiculars on tangent, 161,

218 ;
properties of sphero-conic,

309, 313 ; spheres, 331
Foci

‘ four in number, 181 ; not more
than two real, 145 ; on an axis,

145 ; of a conic, 145, 181, 183 ;

of a sphero-conic, 308 ; their

distances from the centre, 154
Focus and directrix property

of conic, 151 ; of sphero-conic,

310
Forms

cobasal, 34, 35 ; constructed from
corresponding triads, 35 ;

ele-

mentary geometric, 32 ; har-

monic, 39, 116; homographic,

189, 191, 193, 231, 236, 238, 332,

334 ; incident, 35, 231, 235, 239 ;

of second order, 115, 117, 118,

231, 233, 235, 239, 240, 247, 296,

302, 332 ;
projective and per-

spective, 33, 35, 38
Four-edge, complete, 294
Four-face, complete, 294
Fr5gier point, 137

Generators

of a cone, 293, 300, 301 ; of a

quadric, 329, 333

Harmonic
envelope and locus, 244 ; mates in

an involution, 135 ;
pairs of

mates in homographic involu-

tions, 243 ;
perspective, 203 ;

property of complete quadrangle

and quadrilateral, 42 : of con-
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jugate linesand points for a conic,

72 : of eight-point and eight-

face, 356, 357 ; sets of four

elements, 39, 116
Hexagon

inscribed in a conic, 89 ; circum-

scribed to a conic, 90
Homographic

forms, 189, 191, 193 : are equi-

anharmonic, 190 ; forms of

second order, 193, 213 ; in-

volutions, 242, 243, 244, 245;
plane fields, 196 ; ranges and
pencils of conics, 255 ; reguli,

332 ; space fields, 343 ; spherical

fields, 298 ; star-fields, 295
Homography

biaxal, 347 ; determined in plane

by two corresponding tetrads,

198
;

geometrical evidence of,

193 ; identical with projective

transformation, 200 ; uniaxal,

346
Homology, 9

Hyperbola, 52, 92, 93, 105, 107, 120,

133, 146, 150, 152, 154, 155, 156,

162 ; conjugate, 107 ; construc-

tion of from given conditions,

93; rectangular, 108, 121, 137,

145, 179, 181, 269, 271
Hyperboloid, 328

of one or two sheets, 330

Imaginary elements, 173, etc.

Incidence preserved by projection, 4
Incident

elements, 2, 139, 209 : in homo-
graphic forms, 235, 239 ;

forms, 35, 231, 235, 239

;

points and lines of two reciprocal

fields, 208
Indicatrix

absolute, 382 ; relative, 380

;

spherical, 325
Infinity

circle at, 303 ; circular points at,

177 ; elements at, 5 ; tangents
at, 52

Intercepts

on a chord between conic and
asymptotes, 92 ; on a great
circle between sphero-conic and
cyclic arcs, 315 ; on a tangent
between asymptotes and point
of contact, 92 : between direc-

trix and point of contact, 156,

219 ; on two fixed tangents by
a variable tangent to a parabola,

56 ; of tangent and normal on
axes, 150, 160

Intersections

of circle and conic, 101 ; of cone
and spherical cone, 315 ; of

quadric and twisted cubic, 342 ;

of straight line and conic given

by five points, 119 ; of three

straight lines and a plane cubic,

258 ; of two conics, 263 ;
of two

quadrics, 341 ; of two tangents

to a conic with a variable

tangent, 56, 157 ; of two twisted

cubics, 343
Inversion

is a conformal transformation, 225

;

of concentric into coaxal circles,

226 ;
preserves homography on

circular bases, 224 ; transforms

a circle into a circle, 222 : and
inverse fields into inverse fields,

227 ;
with respect to a sphere,

352
Involution

determined by coaxal circles, 140 :

by pencil of conics, 253 : by
range of conics, 254 ;

determined
by two pairs of mates, 126

;

elliptic or hyperbolic, 132, 135,

140 ; of conjugate elements for

a conic, 137 ; of lines of a
regulus, 333 ; of orthogonal

points on an axis, 147 ; of

planes through an axis, 191 ; of

points on a line, 189 ; of points

or tangents of a conic, 129, 131 ;

of rays through a point, 190

;

rectangular, 136 ; skew, 349
Involutory space homography, 347

JoachimsthaFs Theorem, 273

Limiting points of coaxal circles, 140
Line-pair and point-pair, 54, 60, 78
Lines of curvature, 379
Locus

correlative to envelope* 54 ; har-

monic, 244 ; of centres of conics

of a pencil or a range, 270 ; of

centres of quadrics of a pencil,

376 : of a range, 377 : of a
web, 387 ; of foci of conics of a
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range, 270 ; of incident points

in a correlation, 208 ,* of vertex

of projection during rabatment,

14

Mates in an involution, 125, 132, 135

harmonic with respect to double

elements, 126 ; common to two
cobasal involutions, 134 ; har-

monic pairs of, in an involution,

135 : in cobasal homographic
involutions, 243

Menelaus’ Theorem, 48
Meunier’s Theorem, 383

Net
of conics, 288 ; of quadrics, 385

Newton’s Theorem on product of

segments of chords, 98
Normal

at a point on a conic, 137, 150, 272 :

on a quadric, 376, 379 ; bisects

angles between focal distances,

150 ; inversely proportional to

central perpendicular on tangent,

162 ;
its intercept on focal axis,

150, 160 ;
principal—to a twisted

curve, 321

Normal plane to a curve, 321

Normals from a point

to a conic, 272 ; to a quadric,

376

Notation

for elements, 2, 6, 9 ; for projective

and homographic forms, 34,

196 ; for segments, 3

Order of a surface, 318

Ordinate and abscissa referred to

conjugate diameters, 100

Origin of reciprocation, 214

Orthocentre of triangle

circumscribed to parabola, 165 ;

inscribed in rectangular hyperbola,

122, 270
Orthogonal points on an axis of a

conic, 147

Orthoptic circle, 180, 288

of the conics of a range, 254

;

orthogonal to outpolar circles,

288
Orthoptic sphere, 390

orthogonal to outpolar spheres,

391

Osculating

circle, 64 ; cone for twisted curve,

324, 325 ; curves, 64 ; sphere

for twisted curve, 324
Outpolar and inpolar

cones of second order, 303

;

conics, 279, 286, 287 ; envelopes

and loci for two quadrics, 389

;

quadrics, 388

Parabola, 52, 56, 64, 82, 94, 95, 96,

101, 110, 120, 147, 150, 153, 155,

162-165, 183, 219
constructed from given conditions,

57, 94-96, 120 ; special focal

properties of, 162, 219

Paraboloid, 328
elliptic or hyperbolic, 330 ;

of

revolution, 367

Parallelogram

conjugate for ellipse, 103 ;
on

chord of hyperbola as diagonal,

with sides parallel to asymptotes,

92 ;
pseudo-conjugate for hyper-

bola, 106

Parameter
of parabola, 155 ;

of parallel

chords, 101, 111, 164

Pascal’s Theorem, 89

Pencil

of conics, 252, 255 : conjugate

points for, 259 : construction

of, 264 ; of quadrics, 371, 372 :

conjugate line of a point for,

372 : common self-polar tetra-

hedron for, 373
Pencils

axial, 172 ; cobasal, perspective,

equal, 33, 34 ;
conical, 302

;

conjugate, 73 ; flat, 32 ; homo-
graphic, 191 ; of second order,

115, 175

Perspective

harmonic, 203
;

plane, 9 : con-

struction of, 18, 21, 23 ; relation

between two conics, 59 ;
space,

1, 8, 346 ; spherical, 298 ; star,

295, 299
Plane of perspective, 346

Planes of circular section

of a cone, 315 ; of a quadric, 367

Point-circle, 138, 178

Point-sphere, 304
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Polar

conic with respect to a cubic, 260 ;

cubic of a plane for a pencil of

quadrics, 375 ; lines with respect

to a quadric, 337 ; quadrangle
for a conic, 282

;
quadric of a

line for a pencil of quadrics,

374
;

quadrilateral for a conic,

283
Polar pencil equi-anharmonic with

range of poles, 74
Pole and polar

construction for, 73 ; for a circle,

76 ; for a conic, 69 ; for a line-

pair and point-pair, 78 ; for a

sphero-conic, 302 ; when pole is

on conic or polar is a tangent,

71

Pole and polar plane

for a cone, 301 ; for a quadric, 337
Pole of perspective

in the plane, 10 ; in space, 346

;

on the sphere, 297
Poncelet’s Porism, 281
Principal

normal to twisted curve, 321 ;

planes of a quadric, 366
Product of

directly equal pencils, 55 ;
form

of second order homographic
with form of first order, 236,

238 ; homographic involutions,

245 ; involution and homo-
graphic simple form, 246 ;

pro-

jective ranges and pencils : of

first order, 57, 58, 333, of

second order, 240, 247 ;
three

homographic axial pencils, 339 ;

two homographic axial pencils,

300, 333, complemcntarv reguli,

334
Projection, 1

central or conical, 13 ; construc-

tion of figures in, 9, 18, 20, 21, 22,

23 ; cylindrical, 13 ; imaginary,

183 ; of circle into a conic, 52 ;

of one conic into another, 59 ;

of quadrilateral into a square,

23 ; of two conics into : circles,

183, coaxial conics, 274 ;
of

two tetrads into one another,

200 ; orthogonal, 13, 102

;

particular cases of, 15, 17

;

plane and vertex of, 1

Pseudo-conjugate parallelogram, 106

Quadrangle
base of pencil of conics, 252

;

complete, 42 : its sides meet any
line in three pairs of an involu-

tion, 254 ; inscribed in a conic,

72
;

polar for a conic, 282, and
inscribed in another, 284

Quadric, 328
degenerate, 335 ; determined by

nine points, 328
Quadrics of curvature, 384
Quadrilateral

base of range of conics, 252

;

complete, 42 ; its vertices join

to any point by three pairs of an
involution, 254 ; circumscribed

to a conic, 73 ; mid -points of

sides lie on a conic, 270
;

polar

for a conic, 283, and circum-

scribed to another, 285
Quartic

plane, 223, 246, 247, 256 ;
twisted,

341, 371, 373

Rabatment, 9, 13

of vertex of projection to obtain

pole of perspective, 14

Radical

axis, 138, 221, 269 ;
plane, 374

Range
of conics, 252, 253, 256, 260:

conjugate lines for, 260 ; of

quadrics, 377

Ranges
cobasal, collinear, perspective, pro-

jective, similar and equal, 33,

34 ; conjugate, 74 ; homo-
graphic, 189 ; of conics, 256 ;

of second order, 115-117, 231,

233, 238, 240; skew, 333;
spherical, 296

Ratio of segments round a triangle,

46
Reciprocal

fields, in a plane, 207, in a star,

295, in space, 350 ; of a conic,

79 ;
polars, 78 ; transformations,

207, 208, 210, 212, 275, 350
Reciprocation, 78

of a conic with respect to a focus,

215 ; of coaxal circles into con-

focal conics, 220, 269 ; of two
conics, 275, or two quadrics,

387, into one another ; with
respect to a circle, 214, 215
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Reciprocity, 208
Rectifying plane, 321
Regulus, 331

complementary, 332
Relation between

curvature and torsion of twisted
curve, 325 ;

six elements in

involution, 128, 129

Self-conjugate

three-edge : for a quadric, 363,

for a range of quadrics, 377 ;

triangle : for a quadric, 363, for

a pencil of quadrics, 372
Self-corresponding elements, 33, 35,

118, 119, 202, 214, 233, 243, 344
Self-polar

tetrahedron : for a quadric, 363,

for two quadrics, 369, for a
pencil of quadrics, 373, for a
range of quadrics, 377 ;

three-

edge for a cone, 301 ; triangle :

for a conic, 72, for two conics,

263, for a pencil or range of

conics, 253, 259, 263 ; triangles

for the same conic, 276
Semi-latus rectum, 153

is a harmonic mean between seg-

ments of a focal chord, 159
Sheaf, 293
Similar

conics, 289 ; figures, 15, 18

Sphere
great circles on, 296, 298, 319,

325 ; focal, 331 ; orthoptic,

390 ; osculating, 324 ;
small

circles on, 299, 307, 312
Spherical

cone, 303
;

pole, 297
Sphero-conic, 299, 306
Spheroid, 367
Star, 1, 171, 293

its representation on the sphere,

296
Stretch, 16, 103

Tangents
at the four intersections of two

conics, 184, 244 ; from a point

to a conic, 52, 122, 131 : con-

structed when conic is given by
five tangents, 122 : harmonic
with respect to conjugate lines

407

through the point, 72 : subtend
equal or supplementary angles

at a focus, 156, 218
Tetrahedron

self-corresponding in a space homo-
graphy, 344 ; self-polar : for a
quadric, 363, for a pencil or

range of quadrics, 373, 377
Three-edge

self-conjugate for a quadric, 363

;

self-polar for a cone, 301
Torsion

radius of, 324 ; relations with
principal and spherical curva-
ture, 326, 327

Trace of a line or plane on a plane, 3

Transversals

of a pencil, 31 ;
of a regulus, 332

Triangle

circumscribing a parabola, 164

;

formed by tangent and
asymptotes, 93 ; inscribed in

rectangular hyperbola, 121 ;

self-corresponding : in a correla-

tion, 214, in a homography,
202 ; self-polar : for a conic,

72, for a pencil or range of

conics, 253, 263
Triangles

circumscribed to, 278, inscribed in,

277, 278, self-polar for, 276:
the same conic

Triangularly or polygonally inscribed

and circumscribed conics, 280 ,

286
Twelve-face eight-point, 353, 373
Twelve-point eight-face, 355

Ultimate intersections and joins, 318,

322
Umbilics of a quadric, 367, 380

Vanishing points, lines and planes,

6, 199, 343
Vertex

of central conic, 85 ; of parabola,

85 ; of paraboloid, 369 ;
of

projection, 1

Web
of conics, 288 ; of quadrics, 387

Wrap of second order, 302
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